Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biom J ; 66(5): e202300278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988195

RESUMEN

Rapid advances in high-throughput DNA sequencing technologies have enabled large-scale whole genome sequencing (WGS) studies. Before performing association analysis between phenotypes and genotypes, preprocessing and quality control (QC) of the raw sequence data need to be performed. Because many biostatisticians have not been working with WGS data so far, we first sketch Illumina's short-read sequencing technology. Second, we explain the general preprocessing pipeline for WGS studies. Third, we provide an overview of important QC metrics, which are applied to WGS data: on the raw data, after mapping and alignment, after variant calling, and after multisample variant calling. Fourth, we illustrate the QC with the data from the GENEtic SequencIng Study Hamburg-Davos (GENESIS-HD), a study involving more than 9000 human whole genomes. All samples were sequenced on an Illumina NovaSeq 6000 with an average coverage of 35× using a PCR-free protocol. For QC, one genome in a bottle (GIAB) trio was sequenced in four replicates, and one GIAB sample was successfully sequenced 70 times in different runs. Fifth, we provide empirical data on the compression of raw data using the DRAGEN original read archive (ORA). The most important quality metrics in the application were genetic similarity, sample cross-contamination, deviations from the expected Het/Hom ratio, relatedness, and coverage. The compression ratio of the raw files using DRAGEN ORA was 5.6:1, and compression time was linear by genome coverage. In summary, the preprocessing, joint calling, and QC of large WGS studies are feasible within a reasonable time, and efficient QC procedures are readily available.


Asunto(s)
Control de Calidad , Secuenciación Completa del Genoma , Humanos , Biometría/métodos , Bioestadística/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Hum Genet ; 138(8-9): 1027-1042, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29464339

RESUMEN

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.


Asunto(s)
Conexinas/genética , Anomalías del Ojo/genética , Mutación Missense/genética , Catarata/genética , Estudios de Cohortes , Proteínas del Ojo/genética , Femenino , Uniones Comunicantes/genética , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Cristalino/patología , Masculino , Linaje , Fenotipo
3.
Ophthalmology ; 126(8): 1181-1188, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30902645

RESUMEN

PURPOSE: We aimed to unravel the molecular basis of sporadic retinitis pigmentosa (sRP) in the largest cohort reported to date. DESIGN: Case series. PARTICIPANTS: A cohort of 877 unrelated Spanish sporadic cases with a clinical diagnosis of retinitis pigmentosa (RP) and negative family history. METHODS: The cohort was studied by classic genotyping or targeted next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) and array-based comparative genomic hybridization were performed to confirm copy number variations detected by NGS. Quantitative fluorescent polymerase chain reaction was assessed in sRP cases carrying de novo variants to confirm paternity. MAIN OUTCOME MEASURES: The study of the sRP cohort showed a high proportion of causal autosomal dominant (AD) and X-linked (XL) variants, most of them being de novo. RESULTS: Causative variants were identified in 38% of the patients studied, segregating recessively in 84.5% of the solved cases. Biallelic variants detected in only 6 different autosomal recessive genes explained 50% of the cases characterized. Causal AD and XL variants were found in 7.6% and 7.9% of cases, respectively. Remarkably, 20 de novo variants were confirmed after trio analysis, explaining 6% of the cases. In addition, 17% of the solved sRP cases were reclassified to a different retinopathy phenotype. CONCLUSIONS: This study highlights the clinical utility of NGS testing for sRP cases, expands the mutational spectrum, and provides accurate prevalence of mutated genes. Our findings evidence the underestimated role of de novo variants in the etiology of RP, emphasizing the importance of segregation analysis as well as comprehensive screening of genes carrying XL and AD variants in sporadic cases. Such in-depth study is essential for accurate family counseling and future enrollment in gene therapy-based treatments.


Asunto(s)
Retinitis Pigmentosa/genética , Adulto , Estudios de Cohortes , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN/métodos , Femenino , Genes Recesivos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo
4.
J Pathol Clin Res ; 9(4): 273-284, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36999983

RESUMEN

ADP-ribosylation (ADPR) of proteins is catalyzed by ADP-ribosyltransferases, which are targeted by inhibitors (i.e. poly(ADP-ribose) polymerase inhibitors [PARPi]). Although renal cell carcinoma (RCC) cells are sensitive in vitro to PARPi, studies on the association between ADPR levels and somatic loss of function mutations in DNA damage repair genes are currently missing. Here we observed, in two clear cell RCC (ccRCC) patient cohorts (n = 257 and n = 241) stained with an engineered ADP-ribose binding macrodomain (eAf1521), that decreased cytoplasmic ADPR (cyADPR) levels significantly correlated with late tumor stage, high-ISUP (the International Society of Urological Pathology) grade, presence of necrosis, dense lymphocyte infiltration, and worse patient survival (p < 0.01 each). cyADPR proved to be an independent prognostic factor (p = 0.001). Comparably, absence of nuclear ADPR staining in ccRCC correlated with absence of PARP1 staining (p < 0.01) and worse patient outcome (p < 0.05). In papillary RCC the absence of cyADPR was also significantly associated with tumor progression and worse patient outcome (p < 0.05 each). To interrogate whether the ADPR status could be associated with genetic alterations in DNA repair, chromatin remodeling, and histone modulation, we performed DNA sequence analysis and identified a significant association of increased ARID1A mutations in ccRCCcyADPR+++/PARP1+ compared with ccRCCcyADPR-/PARP1- (31% versus 4%; p < 0.05). Collectively, our data suggest the prognostic value of nuclear and cytoplasmic ADPR levels in RCC that might be further influenced by genetic alterations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Adenosina Difosfato Ribosa/metabolismo , Pronóstico , ADP-Ribosilación , Histonas/metabolismo
5.
EMBO Mol Med ; 15(4): e16863, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36779660

RESUMEN

Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Sarcoma , Humanos , Reparación del ADN por Recombinación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Sarcoma/terapia , Sarcoma/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinación Homóloga
6.
Sci Rep ; 12(1): 21502, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513709

RESUMEN

Rapid advances in high-throughput DNA sequencing technologies have enabled the conduct of whole genome sequencing (WGS) studies, and several bioinformatics pipelines have become available. The aim of this study was the comparison of 6 WGS data pre-processing pipelines, involving two mapping and alignment approaches (GATK utilizing BWA-MEM2 2.2.1, and DRAGEN 3.8.4) and three variant calling pipelines (GATK 4.2.4.1, DRAGEN 3.8.4 and DeepVariant 1.1.0). We sequenced one genome in a bottle (GIAB) sample 70 times in different runs, and one GIAB trio in triplicate. The truth set of the GIABs was used for comparison, and performance was assessed by computation time, F1 score, precision, and recall. In the mapping and alignment step, the DRAGEN pipeline was faster than the GATK with BWA-MEM2 pipeline. DRAGEN showed systematically higher F1 score, precision, and recall values than GATK for single nucleotide variations (SNVs) and Indels in simple-to-map, complex-to-map, coding and non-coding regions. In the variant calling step, DRAGEN was fastest. In terms of accuracy, DRAGEN and DeepVariant performed similarly and both superior to GATK, with slight advantages for DRAGEN for Indels and for DeepVariant for SNVs. The DRAGEN pipeline showed the lowest Mendelian inheritance error fraction for the GIAB trios. Mapping and alignment played a key role in variant calling of WGS, with the DRAGEN outperforming GATK.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Biología Computacional , Mutación INDEL , Programas Informáticos
7.
Invest Ophthalmol Vis Sci ; 59(6): 2345-2354, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847639

RESUMEN

Purpose: To provide a comprehensive overview of the molecular basis of autosomal dominant retinitis pigmentosa (adRP) in Spanish families. Thus, we established the molecular characterization rate, gene prevalence, and mutational spectrum in the largest European cohort reported to date. Methods: A total of 258 unrelated Spanish families with a clinical diagnosis of RP and suspected autosomal dominant inheritance were included. Clinical diagnosis was based on complete ophthalmologic examination and family history. Retrospective and prospective analysis of Spanish adRP families was carried out using a combined strategy consisting of classic genetic techniques and next-generation sequencing (NGS) for single-nucleotide variants and copy number variation (CNV) screening. Results: Overall, 60% of our families were genetically solved. Interestingly, 3.1% of the cohort carried pathogenic CNVs. Disease-causing variants were found in an autosomal dominant gene in 55% of the families; however, X-linked and autosomal recessive forms were also identified in 3% and 2%, respectively. Four genes (RHO, PRPF31, RP1, and PRPH2) explained up to 62% of the solved families. Missense changes were most frequently found in adRP-associated genes; however, CNVs represented a relevant disease cause in PRPF31- and CRX-associated forms. Conclusions: Implementation of NGS technologies in the adRP study clearly increased the diagnostic yield compared with classic approaches. Our study outcome expands the spectrum of disease-causing variants, provides accurate data on mutation gene prevalence, and highlights the implication of CNVs as important contributors to adRP etiology.


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Genes Dominantes/genética , Mutación , Retinitis Pigmentosa/genética , Adulto , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Genes Ligados a X , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Incidencia , Masculino , Linaje , Prevalencia , Retinitis Pigmentosa/epidemiología , Estudios Retrospectivos , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA