Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617077

RESUMEN

Determining and applying 'good' postharvest and quality control practices for otherwise highly sensitive fruits, such as sour cherry, is critical, as they serve as excellent media for a wide variety of microbial contaminants. The objective of this research was to report two series of experiments on the modified atmosphere storage (MAP) of sour cherries (Prunus cerasus L. var. Kántorjánosi, Újfehértói fürtös). Firstly, the significant effect of different washing pre-treatments on various quality indices was examined (i.e., headspace gas composition, weight loss, decay rate, color, firmness, soluble solid content, total plate count) in MAP-packed fruits. Subsequently, the applicability of near infrared (NIR) spectroscopy combined with chemometrics was investigated to detect the effect of various storage conditions (packed as control or MAP, stored at 3 or 5 °C) on sour cherries of different perceived ripeness. Significant differences were found for oxygen concentration when two perforations were applied on the packages of 'Kántorjánosi' (p < 0.01); weight loss when 'Kánorjánosi' (p < 0.001) and 'Újfehértói fürtös' (p < 0.01) were packed in MAP; SSC when 'Újfehértói fürtös' samples were ozone-treated (p < 0.05); and total plate count when 'Kántorjánosi' samples were ozone-treated (p < 0.01). The difference spectra reflected the high variability in the samples, and the detectable effects of different packaging. Based on the investigations with the soft independent modelling of class analogies (SIMCA), different packaging and storage resulted in significant differences in most of the cases even on the first storage day, which in many cases increased by the end of storage. The soft independent modelling of class analogies proved to be suitable for classification with apparent error rates between 0 and 0.5 during prediction regardless of ripeness. The research findings suggest the further correlation of NIR spectroscopic and reference parameters to support postharvest handling and fast quality control.


Asunto(s)
Ozono , Prunus avium , Prunus avium/química , Espectroscopía Infrarroja Corta , Frutas/química , Ozono/análisis , Atmósfera
2.
Sensors (Basel) ; 21(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477304

RESUMEN

Mung bean is a leguminous crop with specific trait in its diet, namely in the form of anti-nutrient components. The sprouting process is commonly done for better nutritional acceptance of mung bean as it presents better nutritional benefits. Sprouted mung bean serves as a cheap source of protein and ascorbic acid, which are dependent on the sprouting process, hence the importance of following the biological process. In larger production scale, there has not been a definite standard for mung bean sprouting, raising the need for quick and effective mung bean sprout quality checks. In this regard, near-infrared spectroscopy (NIRS) has been recognized as a highly sensitive technique for quality control that seems suitable for this study. The aim of this paper was to describe quality parameters (water content, pH, conductivity, and ascorbic acid by titration) during sprouting using conventional analytical methods and advanced NIRS techniques as correlative methods for modelling sprouted mung beans' quality and ascorbic acid content. Mung beans were sprouted in 6 h intervals up to 120 h and analyzed using conventional methods and a NIR instrument. The results of the standard analytical methods were analyzed with univariate statistics (analysis of variance (ANOVA)), and the NIRS spectral data was assessed with the chemometrics approach (principal component analysis (PCA), discriminant analysis (DA), and partial least squares regression (PLSR)). Water content showed a monotonous increase during the 120 h of sprouting. The change in pH and conductivity did not describe a clear pattern during the sprouting, confirming the complexity of the biological process. Spectral data-based discriminant analysis was able to distinctly classify the bean sprouts with 100% prediction accuracy. A NIRS-based model for ascorbic acid determination was made using standard ascorbic acid to quantify the components in the bean extract. A rapid detection technique within sub-percent level was developed for mung bean ascorbic acid content with R2 above 0.90. The NIR-based prediction offers reliable estimation of mung bean sprout quality.


Asunto(s)
Fenómenos Biológicos , Vigna , Ácido Ascórbico , Germinación , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA