Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 6: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566741

RESUMEN

People with Parkinson's (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias. The Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is the gold standard for monitoring Parkinson's disease progression but requires a neurologist to administer and therefore is not an ideal instrument to continuously evaluate short-term disease fluctuations. We investigated the feasibility of using speech to detect changes in medication states, based on expectations of subtle changes in voice and content related to dopaminergic levels. We calculated acoustic and prosodic features for three speech tasks (picture description, reverse counting, and diadochokinetic rate) for 25 PWP, each evaluated "ON" and "OFF" DRT. Additionally, we generated semantic features for the picture description task. Classification of ON/OFF medication states using features generated from picture description, reverse counting and diadochokinetic rate tasks resulted in cross-validated accuracy rates of 0.89, 0.84, and 0.60, respectively. The most discriminating task was picture description which provided evidence that participants are more likely to use action words in ON than in OFF state. We also found that speech tempo was modified by DRT. Our results suggest that automatic speech assessment can capture changes associated with the DRT cycle. Given the ease of acquiring speech data, this method shows promise to remotely monitor DRT effects.

2.
IEEE Trans Inf Technol Biomed ; 16(4): 644-57, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22588616

RESUMEN

The optic disk (OD) center and margin are typically requisite landmarks in establishing a frame of reference for classifying retinal and optic nerve pathology. Reliable and efficient OD localization and segmentation are important tasks in automatic eye disease screening. This paper presents a new, fast, and fully automatic OD localization and segmentation algorithm developed for retinal disease screening. First, OD location candidates are identified using template matching. The template is designed to adapt to different image resolutions. Then, vessel characteristics (patterns) on the OD are used to determine OD location. Initialized by the detected OD center and estimated OD radius, a fast, hybrid level-set model, which combines region and local gradient information, is applied to the segmentation of the disk boundary. Morphological filtering is used to remove blood vessels and bright regions other than the OD that affect segmentation in the peripapillary region. Optimization of the model parameters and their effect on the model performance are considered. Evaluation was based on 1200 images from the publicly available MESSIDOR database. The OD location methodology succeeded in 1189 out of 1200 images (99% success). The average mean absolute distance between the segmented boundary and the reference standard is 10% of the estimated OD radius for all image sizes. Its efficiency, robustness, and accuracy make the OD localization and segmentation scheme described herein suitable for automatic retinal disease screening in a variety of clinical settings.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Disco Óptico/anatomía & histología , Disco Óptico/irrigación sanguínea , Algoritmos , Bases de Datos Factuales , Técnicas de Diagnóstico Oftalmológico , Humanos , Interpretación de Imagen Asistida por Computador , Enfermedades de la Retina/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA