Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nucleic Acids Res ; 52(4): 1753-1762, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38117984

RESUMEN

Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.


Asunto(s)
G-Cuádruplex , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 63(2): 337-346, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27425410

RESUMEN

Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.


Asunto(s)
Acetilcolinesterasa/metabolismo , Biología Computacional/métodos , Escherichia coli/enzimología , Ingeniería de Proteínas/métodos , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Algoritmos , Automatización de Laboratorios , Simulación por Computador , Diseño Asistido por Computadora , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Escherichia coli/genética , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Mutación , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Conformación Proteica , Desnaturalización Proteica , Estabilidad Proteica , Sirtuinas/genética , Sirtuinas/metabolismo , Relación Estructura-Actividad , Temperatura
3.
Nucleic Acids Res ; 50(4): 2143-2156, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137218

RESUMEN

The coexistence of DNA replication and transcription during S-phase requires their tight coordination to prevent harmful conflicts. While extensive research revealed important mechanisms for minimizing these conflicts and their consequences, little is known regarding how the replication and transcription machinery are coordinated in real-time. Here, we developed a live-cell imaging approach for the real-time monitoring of replisome progression and transcription dynamics during a transcription-replication encounter. We found a wave of partial transcriptional repression ahead of the moving replication fork, which may contribute to efficient fork progression through the transcribed gene. Real-time detection of conflicts revealed their negative impact on both processes, leading to fork stalling or slowdown as well as lower transcription levels during gene replication, with different trade-offs observed in defined subpopulations of cells. Our real-time measurements of transcription-replication encounters demonstrate how these processes can proceed simultaneously while maintaining genomic stability, and how conflicts can arise when coordination is impaired.


Asunto(s)
Replicación del ADN , Transcripción Genética , Replicación del ADN/genética , Inestabilidad Genómica , Humanos , Replicón , Fase S/genética
4.
Mol Biol Evol ; 38(2): 545-556, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32956445

RESUMEN

Many enzymes that catalyze protein post-translational modifications can specifically modify multiple target proteins. However, little is known regarding the molecular basis and evolution of multispecificity in these enzymes. Here, we used a combined bioinformatics and experimental approaches to investigate the evolution of multispecificity in the sirtuin-1 (SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologs and substrates, we identified and examined important amino acid substitutions that have occurred during the evolution of sirtuins in Metazoa and Fungi. We found that mutation of human SIRT1 at these positions, based on sirtuin orthologs from Fungi, could alter its substrate specificity. These substitutions lead to reduced activity toward K382 acetylated p53 protein, which is only present in Metazoa, without affecting the high activity toward the conserved histone substrates. Results from ancestral sequence reconstruction are consistent with a model in which ancestral sirtuin proteins exhibited multispecificity, suggesting that the multispecificity of some metazoan sirtuins, such as hSIRT1, could be a relatively ancient trait.


Asunto(s)
Evolución Molecular , Sirtuina 1/genética , Sustitución de Aminoácidos , Biología Computacional/métodos , Sirtuina 1/metabolismo
5.
Curr Genet ; 67(1): 129-139, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33025160

RESUMEN

Replication-coupled (RC) nucleosome assembly is an essential process in eukaryotic cells to maintain chromatin structure during DNA replication. The deposition of newly-synthesized H3/H4 histones during DNA replication is facilitated by specialized histone chaperones. CAF-1 is an important histone chaperone complex and its main subunit, Cac1p, contains a PIP and WHD domain for interaction with PCNA and the DNA, respectively. While Cac1p subunit was extensively studied in different systems much less is known regarding the importance of the PIP and WHD domains in replication fork progression and genome stability. By exploiting a time-lapse microscopy system for monitoring DNA replication in individual live cells, we examined how mutations in these Cac1p domains affect replication fork progression and post-replication characteristics. Our experiments revealed that mutations in the Cac1p WHD domain, which abolished the CAF-1-DNA interaction, slows down replication fork progression. In contrast, mutations in Cac1p PIP domain, abolishing Cac1p-PCNA interaction, lead to extended late-S/Anaphase duration, elevated number of RPA foci and increased spontaneous mutation rate. Our research shows that Cac1p WHD and PIP domains have distinct roles in high replisome progression and maintaining genome stability during cell cycle progression.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Replicación del ADN/genética , Humanos , Nucleosomas/genética , Dominios y Motivos de Interacción de Proteínas/genética , Saccharomyces cerevisiae/genética
7.
Cell Immunol ; 355: 104135, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32703529

RESUMEN

Primarily known as an elastase inhibitor, human alpha1-antitrypsin also exerts anti-inflammatory and immunomodulatory effects, both in vitro and in vivo. While the anti-protease mechanism of alpha1-antitrypsin is attributed to a particular protein domain coined the reactive center loop, anti-inflammatory and immunomodulatory loci within the molecule remain to be identified. In the present study, directed evolution and back-to-consensus algorithms were applied to human alpha1-antitrypsin. Six unique functional candidate sites were identified on the surface of the molecule; in manipulating these sites by point mutations, a recombinant mutant form of alpha1-antitrypsin was produced, depicting a requirement for sites outside the reactive center loop as essential for protease inhibition, and displaying enhanced anti-inflammatory activities. Taken together, outcomes of the present study establish a potential use for directed evolution in advancing our understanding of site-specific protein functions, offering a platform for development of context- and disease-specific alpha1-antitrypsin-based therapeutics.


Asunto(s)
alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Algoritmos , Animales , Antiinflamatorios , Evolución Molecular Dirigida/métodos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Péptido Hidrolasas/metabolismo , Proteolisis , alfa 1-Antitripsina/ultraestructura
8.
Nucleic Acids Res ; 46(22): 11847-11857, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30395308

RESUMEN

Pif1 DNA helicase is a potent unwinder of G-quadruplex (G4) structures in vitro and functions to maintain genome stability at G4 sequences in Saccharomyces cerevisiae. Here, we developed and utilized a live-cell imaging approach to quantitatively measure the progression rates of single replication forks through different G4 containing sequences in individual yeast cells. We show that in the absence of Pif1, replication rates through specific lagging strand G4 sequences in vivo is significantly decreased. In contrast, we found that in the absence of Pif1, replication rates through the same G4s on the leading strand are not decreased relative to the respective WT strains, showing that Pif1 is essential only for efficient replication through lagging strand G4s. Additionally, we show that a canonical PIP sequence in Pif1 interacts with PCNA and that replication through G4 structures is significantly slower in the absence of this interaction in vitro and in vivo. Thus, Pif1-PCNA interaction is essential for optimal replisome progression through G4 sequences, highlighting the importance of coupling between Pif1 activity and replisome progression during yeast genome replication.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/genética , G-Cuádruplex , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , ADN Helicasas/deficiencia , ADN de Hongos/metabolismo , Inestabilidad Genómica , Conformación de Ácido Nucleico , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
PLoS Genet ; 13(5): e1006778, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505153

RESUMEN

Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.


Asunto(s)
Evolución Molecular , Fase G1/genética , Duplicación de Gen , Aptitud Genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Sitios de Unión , Redes Reguladoras de Genes , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
10.
Biochem Biophys Res Commun ; 501(4): 1029-1033, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29778536

RESUMEN

Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on many different cellular proteins. Despite extensive biochemical and structural studies, focusing on PKMT active site-peptide interactions, little is known regarding how PKMTs recognize globular substrates. To examine whether these enzymes recognize protein substrates through interactions that take place outside of the active site, we have measured SETD6 and SETD7 activity with both protein and peptide RelA substrate. We have utilized the MTase-Glo™ methyltransferase assay to measure the activity of SETD6 and SETD7 with the different RelA substrates and calculated the Michaelis-Menten (MM) parameters. We found an up to ∼12-fold increase in KM of the PKMTs activity with RelA peptide relative to the respective full-length protein, emphasizing the significantly higher PKMT-protein interaction affinity. Examination of SETD6 and SETD7 activity toward the same RelA substrates highlight the similarity in substrate recognition for both PKMTs. Our results show that the interaction affinity of SETD6 and SETD7 with RelA is enhanced through interactions that occur outside of the active site leading to higher catalytic efficiency and specificity. These interactions can significantly vary depending on the PKMT and the specific methylation site on RelA. Overall, our results underline that PKMTs can recognize their substrates through docking interactions that occur out of the active site-peptide region for enhancing their activity and specificity in the cellular environment.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Proto-Oncogénicas c-rel/química , Proteínas Proto-Oncogénicas c-rel/metabolismo , Dominio Catalítico , Cinética , Metilación , Especificidad por Sustrato
11.
Curr Genet ; 64(5): 1129-1139, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29626221

RESUMEN

The budding yeast is currently one of the major model organisms for the study of a wide variety of biological processes. Genetic manipulation of yeast involves the extensive usage of selectable markers that can lead to undesired effects. Thus, marker-free genetic manipulation in yeast is highly desirable for gene/promoter replacement and various other applications. Here we combine the power of selectable markers followed by CRISPR/CAS9 genome editing for common genetic manipulations in yeast in a marker-free manner. We demonstrate our approach for whole gene and promoter replacements and for high-efficiency operator array integration. Our approach allows the utilization of many thousands of existing strains including library strains for the generation of significant genetic changes in yeast in a marker-free and cloning-free fashion.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Farmacorresistencia Microbiana/genética , Edición Génica , Genes Fúngicos , Marcadores Genéticos , Regiones Promotoras Genéticas
12.
Curr Genet ; 64(1): 81-86, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28744706

RESUMEN

The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 , 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF-MCB and SBF-SCB interactions in different fungal species.


Asunto(s)
Evolución Biológica , Fase G1/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Fase S/genética , Transcripción Genética , Levaduras/fisiología , Evolución Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(39): 14118-23, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25228764

RESUMEN

The homotrimeric sliding clamp proliferating cell nuclear antigen (PCNA) mediates Okazaki fragment maturation through tight coordination of the activities of DNA polymerase δ (Pol δ), flap endonuclease 1 (FEN1) and DNA ligase I (Lig1). Little is known regarding the mechanism of partner switching on PCNA and the involvement of PCNA's three binding sites in coordinating such processes. To shed new light on PCNA-mediated Okazaki fragment maturation, we developed a novel approach for the generation of PCNA heterotrimers containing one or two mutant monomers that are unable to bind and stimulate partners. These heterotrimers maintain the native oligomeric structure of PCNA and exhibit high stability under various conditions. Unexpectedly, we found that PCNA heterotrimers containing only one functional binding site enable Okazaki fragment maturation by efficiently coordinating the activities of Pol δ, FEN1, and Lig1. The efficiency of switching between partners on PCNA was not significantly impaired by limiting the number of available binding sites on the PCNA ring. Our results provide the first direct evidence, to our knowledge, that simultaneous binding of multiple partners to PCNA is unnecessary, and if it occurs, does not provide significant functional advantages for PCNA-mediated Okazaki fragment maturation in vitro. In contrast to the "toolbelt" model, which was demonstrated for bacterial and archaeal sliding clamps, our results suggest a mechanism of sequential switching of partners on the eukaryotic PCNA trimer during DNA replication and repair.


Asunto(s)
ADN de Hongos/metabolismo , ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , ADN/química , ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , ADN Polimerasa III/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Hongos/química , ADN de Hongos/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Mol Syst Biol ; 11(10): 829, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446933

RESUMEN

Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas , Levaduras/enzimología , Levaduras/metabolismo
16.
Cell Mol Life Sci ; 71(4): 673-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23995987

RESUMEN

Computational approaches for detecting co-evolution in proteins allow for the identification of protein-protein interaction networks in different organisms and the assignment of function to under-explored proteins. The detection of co-variation of amino acids within or between proteins, moreover, allows for the discovery of residue-residue contacts and highlights functional residues that can affect the binding affinity, catalytic activity, or substrate specificity of a protein. To explore the functional impact of co-evolutionary changes in proteins, a combined experimental and computational approach must be recruited. Here, we review recent studies that apply computational and experimental tools to obtain novel insight into the structure, function, and evolution of proteins. Specifically, we describe the application of co-evolutionary analysis for predicting high-resolution three-dimensional structures of proteins. In addition, we describe computational approaches followed by experimental analysis for identifying specificity-determining residues in proteins. Finally, we discuss studies addressing the importance of such residues in terms of the functional divergence of proteins, allowing proteins to evolve new functions while avoiding crosstalk with existing cellular pathways or forming reproductive barriers and hence promoting speciation.


Asunto(s)
Evolución Molecular , Mapas de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Biología Computacional/métodos , Especiación Genética , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas/genética , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 109(7): E406-14, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308326

RESUMEN

The structure and connectivity of protein-protein interaction (PPI) networks are maintained throughout evolution by coordinated changes (coevolution) of network proteins. Despite extensive research, relatively little is known regarding the molecular basis and functional implications of the coevolution of PPI networks. Here, we used proliferating cell nuclear antigen, a hub protein that mediates DNA replication and repair in eukaryotes, as a model system to study the coevolution of PPI networks in fungi. Using a combined bioinformatics and experimental approach, we discovered that PCNA-partner interactions tightly coevolved in fungal species, leading to specific modes of recognition. We found that fungal proliferating cell nuclear antigen-partner interaction networks diverged into two distinct groups as a result of such coevolution and that hybrid networks of these groups are functionally noncompatible in Saccharomyces cerevisiae. Our results indicate that the coevolution of PPI networks can form functional barriers between fungal species, and thus can promote and fix speciation.


Asunto(s)
Evolución Biológica , Hongos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Especificidad de la Especie
18.
Angew Chem Int Ed Engl ; 54(2): 599-603, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25327786

RESUMEN

Deubiquitinases (DUBs) counteract ubiquitination by removing or trimming ubiquitin chains to alter the signal. Their diverse role in biological processes and involvement in diseases have recently attracted great interest with regard to their mechanism and inhibition. It has been shown that some DUBs are regulated by reactive oxygen species (ROS) in which the catalytic Cys residue undergoes reversible oxidation, hence modulating DUBs activity under oxidative stress. Reported herein for the first time, the observation that small molecules, which are capable of generating ROS efficiently, inhibit DUBs by selective and nonreversible oxidation of the catalytic Cys residue. Interestingly, the small molecule beta-lapachone, which is currently in clinical trials for cancer, is among the potent inhibitors, thus suggesting possible new cellular targets for its therapeutic effects. Our study describes a novel mechanism of DUBs inhibition and opens new opportunities in exploiting them for cancer therapy.


Asunto(s)
Proteasas Ubiquitina-Específicas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
19.
J Cell Sci ; 125(Pt 14): 3333-42, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22505609

RESUMEN

The Msn2 and Msn4 transcription factors play crucial roles in the yeast general stress response. Previous studies identified several large functional domains of Msn2, mainly through crude truncations. Here, using bioinformatics and experimental approaches to examine Msn2 structure-function relationships, we have identified new functional motifs in the Msn2 transcriptional-activating domain (TAD). Msn2 is predicted to adopt an intrinsically disordered structure with two short structural motifs in its TAD. Mutations in these motifs dramatically decreased Msn2 transcriptional activity, yeast stress survival and Msn2 nuclear localization levels. Using the split-ubiquitin assay, we found that these motifs are important for the interaction of Msn2 with Gal11, a subunit of the mediator complex. Finally, we show that one of these motifs is functionally conserved in several yeast species, highlighting a common mechanism of Msn2 transcriptional activation throughout yeast evolution.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Levaduras/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Pliegue de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Relación Estructura-Actividad , Factores de Transcripción/metabolismo , Activación Transcripcional , Levaduras/metabolismo
20.
Nat Genet ; 37(1): 73-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15568024

RESUMEN

How proteins with new functions (e.g., drug or antibiotic resistance or degradation of man-made chemicals) evolve in a matter of months or years is still unclear. This ability is dependent on the induction of new phenotypic traits by a small number of mutations (plasticity). But mutations often have deleterious effects on functions that are essential for survival. How are these seemingly conflicting demands met at the single-protein level? Results from directed laboratory evolution experiments indicate that the evolution of a new function is driven by mutations that have little effect on the native function but large effects on the promiscuous functions that serve as starting point. Thus, an evolving protein can initially acquire increased fitness for a new function without losing its original function. Gene duplication and the divergence of a completely new protein may then follow.


Asunto(s)
Arildialquilfosfatasa/genética , Anhidrasa Carbónica II/genética , Evolución Molecular , Hidrolasas de Triéster Fosfórico/genética , Arildialquilfosfatasa/fisiología , Bacterias/enzimología , Bacterias/genética , Anhidrasa Carbónica II/fisiología , Variación Genética , Humanos , Hidrolasas de Triéster Fosfórico/fisiología , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA