Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 52(17): 2874-87, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23477283

RESUMEN

The anaerobic sulfatase-maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formylglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor in a class of enzymes termed arylsulfatases, which catalyze the hydrolysis of various organosulfate monoesters. anSMEcpe has been shown to be a member of the radical S-adenosylmethionine (SAM) family of enzymes, [4Fe-4S] cluster-requiring proteins that use a 5'-deoxyadenosyl 5'-radical (5'-dA(•)) generated from a reductive cleavage of SAM to initiate radical-based catalysis. Herein, we show that anSMEcpe contains in addition to the [4Fe-4S] cluster harbored by all radical SAM (RS) enzymes, two additional [4Fe-4S] clusters, similar to the radical SAM protein AtsB, which catalyzes the two-electron oxidation of a seryl residue to a FGly residue. We show by size-exclusion chromatography that both AtsB and anSMEcpe are monomeric proteins, and site-directed mutagenesis studies of AtsB reveal that individual Cys → Ala substitutions at seven conserved positions result in an insoluble protein, consistent with those residues acting as ligands to the two additional [4Fe-4S] clusters. Ala substitutions at an additional conserved Cys residue (C291 in AtsB and C276 in anSMEcpe) afford proteins that display intermediate behavior. These proteins exhibit reduced solubility and drastically reduced activity, behavior that is conspicuously similar to that of a critical Cys residue in BtrN, another radical SAM dehydrogenase [Grove, T. L., et al. (2010) Biochemistry 49, 3783-3785]. We also show that wild-type anSMEcpe acts on peptides containing other oxidizable amino acids at the target position. Moreover, we show that the enzyme will convert threonyl peptides to the corresponding ketone product, and also allo-threonyl peptides, but with a significantly reduced efficiency, suggesting that the pro-S hydrogen atom of the normal cysteinyl substrate is stereoselectively removed during turnover. Lastly, we show that the electron generated during catalysis by AtsB and anSMEcpe can be utilized for multiple turnovers, albeit through a reduced flavodoxin-mediated pathway.


Asunto(s)
Cisteína/química , Serina/química , Sulfatasas/química , Secuencia de Aminoácidos , Anaerobiosis , Secuencia de Bases , Catálisis , Cromatografía en Gel , Clonación Molecular , Clostridium perfringens/genética , Cartilla de ADN , Electrones , Genes Bacterianos , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Espectrofotometría Ultravioleta
2.
Biochemistry ; 49(18): 3783-5, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20377206

RESUMEN

BtrN catalyzes the two-electron oxidation of the C3 secondary alcohol of 2-deoxy-scyllo-inosamine to the corresponding ketone and is a member of a subclass of radical S-adenosylmethionine (SAM) enzymes called radical SAM (RS) dehydrogenases. Like all RS enzymes, BtrN contains a [4Fe-4S] cluster that delivers an electron to SAM, inducing its cleavage to the common intermediate in RS reactions, the 5'-deoxyadenosyl 5'-radical. In this work, we show that BtrN contains an additional [4Fe-4S] cluster, thought to bind in contact with the substrate to facilitate loss of the second electron in the two-electron oxidation.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Oxidorreductasas/química , S-Adenosilmetionina/metabolismo , Bacillus/química , Bacillus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
3.
Science ; 332(6029): 604-7, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21415317

RESUMEN

Methylation of small molecules and macromolecules is crucial in metabolism, cell signaling, and epigenetic programming and is most often achieved by S-adenosylmethionine (SAM)-dependent methyltransferases. Most employ an S(N)2 mechanism to methylate nucleophilic sites on their substrates, but recently, radical SAM enzymes have been identified that methylate carbon atoms that are not inherently nucleophilic via the intermediacy of a 5'-deoxyadenosyl 5'-radical. We have determined the mechanisms of two such reactions targeting the sp(2)-hybridized carbons at positions 2 and 8 of adenosine 2503 in 23S ribosomal RNA, catalyzed by RlmN and Cfr, respectively. In neither case is a methyl group transferred directly from SAM to the RNA; rather, both reactions proceed by a ping-pong mechanism involving intermediate methylation of a conserved cysteine residue.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Metiltransferasas/metabolismo , ARN Ribosómico 23S/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina/química , Adenosina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Carbono/química , Fenómenos Químicos , Cisteína/química , Cisteína/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrógeno/química , Metilación , Metiltransferasas/química , Metiltransferasas/genética , ARN Bacteriano/metabolismo , Staphylococcus aureus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA