Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281382

RESUMEN

A series of twenty-seven bis(acylhydrazones) were successfully synthesized with high yields through a multistep process, which entailed the esterification of hydroxyl groups, hydrazination with an excess of hydrazine hydrate, and subsequent reactions with various carbonyl moieties (aldehydes). In the final stage of synthesis, different chemical species including aromatic, heterocyclic, and aliphatic compounds were integrated into the framework. The resulting compounds were characterized using several spectroscopic techniques (1H NMR, 13C NMR, and mass spectrometry). Their anticholinesterase activities were assessed in vitro by examining their interactions with two cholinesterase enzymes: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the synthesized hits, compounds 3, 5, 6, 9-12, and 14 exhibited good to moderate inhibition of AChE. Specifically, 10 (IC50 = 26.3 ± 0.4 µM) and 11 (IC50 = 28.4 ± 0.5 µM) showed good inhibitory activity against AChE, while 9, 12, 3, and 6 exhibited significant inhibition potential against AChE with IC50 values ranging from 35.2 ± 1.1 µM to 64.4 ± 0.3 µM. On the other hand, 5 (IC50 = 22.0 ± 1.1 µM) and 27 (IC50 = 31.3 ± 1.3 µM) displayed significant, and 19 (IC50 = 92.6 ± 0.4 µM) showed moderate inhibitory potential for BChE. Notably, 5 and 27 exhibited dual inhibition of AChE and BChE, with greater potency than the standard drug galantamine. The binding patterns of these molecules within the binding cavities of AChE and BChE were anticipated by molecular docking which showed good correlation with our in vitro findings. Further structural optimization of these molecules may yield more potent AChE and BChE inhibitors.


Asunto(s)
Compuestos de Bifenilo , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Hidrazinas , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
2.
Bioorg Chem ; 150: 107501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38865858

RESUMEN

In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.

3.
Chem Biodivers ; : e202400704, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781003

RESUMEN

Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (in vitro). In the series, six compounds 12 (IC50=10.19±0.16 µM), 11 (IC50=15.05±1.11 µM), 10 (IC50=17.01±1.23 µM), 9 (IC50=17.22±0.81 µM), 13 (IC50=19.31±0.18 µM), and 14 (IC50=19.62±0.21 µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24 µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.

4.
Angew Chem Int Ed Engl ; 63(22): e202403314, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38517056

RESUMEN

Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.


Asunto(s)
Enlace de Hidrógeno , Aniones/química , Ionóforos/química , Oxidación-Reducción , Estructura Molecular , Transporte Iónico
5.
Chemistry ; 29(10): e202202887, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399427

RESUMEN

Artificial channels capable of facilitating the transport of Cl- ions across cell membranes while being nontoxic to the cells are rare. Such synthetic ion channels can mimic the functions of membrane transport proteins and, therefore, have the potential to treat channelopathies by replacing defective ion channels. Here we report isophthalic acid-based structurally simple molecules 1 a and 2 a, which self-assemble to render supramolecular nanochannels that allow selective transport of Cl- ions. As evident from the single-crystal X-ray diffraction analysis, the self-assembly is governed by intermolecular hydrogen bonding and π-π stacking interactions. The MD simulation studies for both 1 a and 2 a confirmed the formation of stable Cl- channel assembly in the lipid membrane and Cl- transport through them. The MQAE assay showed the efficacy of the compounds in delivering Cl- ions into cells, and the MTT assays proved that the compounds are nontoxic to cells even at a concentration of 100 µM.


Asunto(s)
Canales de Cloruro , Ácidos Ftálicos , Canales Iónicos/química , Células Epiteliales
6.
Bioorg Chem ; 141: 106847, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37722268

RESUMEN

The anti-inflammatory and analgesic drugs currently used are associated with several adverse effects and found to be highly unsafe for long-term use. Currently, nineteen novel bis-Schiff base derivatives (1-19) of flurbiprofen have been designed, prepared and assessed for in-vivo analgesic, anti-inflammatory and in vivo acute toxicity evaluation. The structures of the acquired compounds were deduced through modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR. Amongst the series, compounds 7, 9, and 10 attributed potent activities with 93.89, 92.50, and 90.47% decreased edema, respectively compared to flurbiprofen (90.01%), however, compounds 11 and 15 exhibited significant activity of 90.00% decrease. Out of them, fourteen compounds (1-6, 8, 12-14, and 16-19) displayed good activity in the range of 68.96-86.95%. In case of an analgesic study, all the derivatives significantly (p 0.001) increased the pain threshold time particularly compound 7 had the best analgesic effect (24 ± 2.08 s) in comparison with flurbiprofen (21.66 ± 2.02 s) using hot plate test. Similarly, in the acetic acid-induced writhing test, compound 7 determined a potent inhibitory effect (60.47 %) close to flurbiprofen (59.28%). All the synthesized derivatives were found safe up to the dose of 30 mg/kg, in acute toxicity study. On a molecular scale, the synthesized compounds were modeled through a ligand-based pharmacophore study and molecular docking to have insight into the different possible interactions leading to high inhibition levels against the COX-2 enzyme.


Asunto(s)
Flurbiprofeno , Humanos , Flurbiprofeno/farmacología , Flurbiprofeno/química , Inhibidores de la Ciclooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2 , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Antiinflamatorios/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Antiinflamatorios no Esteroideos/química , Carragenina
7.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175988

RESUMEN

Mangrove ecosystems play curial roles in providing many ecological services and alleviating global climate change. However, they are in decline globally, mainly threatened by human activities and global warming, and organic pollutants, especially PAHs, are among the crucial reasons. Microbial remediation is a cost-effective and environmentally friendly way of alleviating PAH contamination. Therefore, understanding the effects of environmental and nutritional parameters on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is significant for the bioremediation of PAH contamination. In the present study, five bacterial strains, designated as Bp1 (Genus Rhodococcus), Sp8 (Genus Nitratireductor), Sp13 (Genus Marinobacter), Sp23 (Genus Pseudonocardia), and Sp24 (Genus Mycolicibacterium), have been isolated from mangrove sediment and their ring hydroxylating dioxygenase (RHD) genes have been successfully amplified. Afterward, their degradation abilities were comprehensively evaluated under normal cultural (monoculture and co-culture) and different nutritional (tryptone, yeast extract, peptone, glucose, sucrose, and NPK fertilizer) and environmental (cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS)) parameters, as well with different co-contaminants (phenanthrene and naphthalene) and heavy metals (Cd2+, Cu2+, Fe3+, Ni2+, Mg2+, Mn2+, and Co2+). The results showed that strain Sp24 had the highest pyrene degradation rate (85%) in the monoculture experiment after being cultured for 15 days. Adding nitrogen- and carbon-rich sources, including tryptone, peptone, and yeast extract, generally endorsed pyrene degradation. In contrast, the effects of carbon sources (glucose and sucrose) on pyrene degradation were distinct for different bacterial strains. Furthermore, the addition of NPK fertilizer, SDS, Tween-80, phenanthrene, and naphthalene enhanced the bacterial abilities of pyrene removal significantly (p < 0.05). Heavy metals significantly reduced all bacterial isolates' degradation potentials (p < 0.05). The bacterial consortia containing high bio-surfactant-producing strains showed substantially higher pyrene degradation. Moreover, the consortia of three and five bacterial strains showed more degradation efficiency than those of two bacterial strains. These results provide helpful microbial resources for mangrove ecological remediation and insight into optimized culture strategies for the microbial degradation of PAHs.


Asunto(s)
Metales Pesados , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Humanos , Ecosistema , Fertilizantes , Peptonas/metabolismo , Pirenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Fenantrenos/metabolismo , Bacterias , Biodegradación Ambiental , Naftalenos/metabolismo , Metales Pesados/metabolismo
8.
Saudi Pharm J ; 31(8): 101688, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457366

RESUMEN

Background: Urease belongs to the family of amid hydrolases with two nickel atoms in their core structure. On the basis of literature survey, this research work is mainly focused on the study of bis-Schiff base derivatives of benzyl phenyl ketone nucleus. Objective: Synthesis of benzyl phenyl ketone based bis-Schiff bases in search of potent urease inhibitors. Method: In the current work, bis-Schiff bases were synthesized through two steps reaction by reacting benzyl phenyl ketone with excess of hydrazine hydrate in ethanol solvent in the first step to get the desired hydrazone. In last, different substituted aromatic aldehydes were refluxed in catalytic amount of acetic acid with the desired hydrazone to obtain bis-Schiff base derivatives in tremendous yields. Using various spectroscopic techniques including FTIR, HR-ESI-MS, and 1H NMR spectroscopy were used to clarify the structures of the created bis-Schiff base derivatives. Results: The prepared compounds were finally screened for their in-vitro urease inhibition activity. All the synthesized derivatives (3-9) showed excellent to less inhibitory activity when compared with standard thiourea (IC50 = 21.15 ± 0.32 µM). Compounds 3 (IC50 = 22.21 ± 0.42 µM), 4 (IC50 = 26.11 ± 0.22 µM) and 6 (IC50 = 28.11 ± 0.22 µM) were found the most active urease inhibitors near to standard thiourea among the synthesized series. Similarly, compound 5 having IC50 value of 34.32 ± 0.65 µM showed significant inhibitory activity against urease enzyme. Furthermore, three compounds 7, 8, and 9 exhibited less activity with IC50 values of 45.91 ± 0.14, 47.91 ± 0.14, and 48.33 ± 0.72 µM respectively. DFT used to calculate frontier molecular orbitals including; HOMO and LUMO to indicate the charge transfer from molecule to biological transfer, and MEP map to indicate the chemically reactive zone suitable for drug action. The electron localization function (ELF), non-bonding orbitals, AIM charges are also calculated. The docking study contributed to the analysis of urease protein binding.

9.
Angew Chem Int Ed Engl ; 62(44): e202308842, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37478126

RESUMEN

Synthetic supramolecular ion transporters find applications as potential therapeutics and as tools for engineering functional membranes. Stimuli-responsive systems enable external control over transport, which is necessary for targeted activation. The Minireview provides an overview of current approaches to developing stimuli-responsive ion transport systems, including channels and mobile carriers, that can be controlled using photo or redox inputs.

10.
Chem Rec ; 22(2): e202100225, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34766703

RESUMEN

Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.


Asunto(s)
Canales Iónicos , Canales Iónicos/química
11.
J Org Chem ; 87(1): 10-17, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34908424

RESUMEN

A series of triazole-cyanostilbene receptors were designed and synthesized. The receptor binds with the anions through various CH···anion hydrogen bonding interactions, where strong binding was observed for SO42- anions followed by Cl-, Br-, NO3-, and I-, calculated from the 1H NMR titration experiment. The NOESY NMR experiment of the receptor confirmed the formation of anion-induced folded conformation. The CH···anion hydrogen bonding interaction-mediated anion recognition and foldamer formation were further confirmed from geometry optimization studies of the anion-bound complex. The receptor transports Cl- anions efficiently compared to SO42- anions across the lipid bilayer membrane via a mobile carrier mechanism.


Asunto(s)
Hidrógeno , Fosfolípidos , Aniones , Enlace de Hidrógeno , Conformación Molecular
12.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 97-105, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35809298

RESUMEN

Traditionally, Viola serpens has been used in the treatment of several human disorders including liver diseases without any scientific evidence. As the current therapies are not very effective and face challenges of unwanted effects and patient compliance, therefore more effective and safe agents are highly needed. The current study aimed to evaluate the hepatoprotective potential of the crude extract and subsequent fractions of the whole plant in the in-vivo model using various hematological and histopathological parameters followed by an HPLC study for the identification of phenolic compounds. Rabbits (1000-1200 g) were used in the study. Paracetamol (2g) was used to induce hepatotoxicity in experimental rabbits. The plant extract was used in two doses (150 and 300 mg/kg body weights) for eight days. The hematological parameters AST, ALT and ALP values were determined along with the histopathology of the liver. Phenolic compounds were identified by high-performance liquid chromatography (HPLC) Agilent-1260 infinity from their retention time, UV spectra and available standards while quantification was done taking the percent peak area. The doses 150 and 300 mg/kg body weight seemed to be more effective. The hematological values and the histopathological slides show the hepatoprotective effect of the plant. Regeneration indicated the presence of nuclei, nuclear cleaning, prominent nucleoli, RBC's, central veins and plates of hepatocytes. The HPLC studies revealed the presence of a number of phenicol compounds. The crude extract and the subsequent fractions of the plant possess strong hepatoprotective activity, providing a scientific rationale for its uses in the treatment of liver toxicities.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Viola , Acetaminofén , Animales , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado , Fenoles/análisis , Extractos Vegetales/química , Conejos
13.
Bioorg Chem ; 128: 106058, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35917750

RESUMEN

Bis-Schiff's base derivatives of 4-nitroacetophenone (1-18) were synthesized in good yields by reacting hydrazone of 4-nitroacetophenone with substituted aldehydes and ketones with catalytic amount of acetic acid. The structures of synthesized products (1-18) were deduced with the help of spectroscopic techniques like 1H NMR, 13C NMR and HR-ESIMS. The synthesized bis-Schiff's bases were assessed for their α-glucosidase inhibitory activity where compound 4 (IC50 = 2.79 ± 0.04 µM), 1 (IC50 = 9.76 ± 0.31 µM), 6 (IC50 = 11.37 ± 0.20 µM), 17 (IC50 = 14.10 ± 0.12 µM), 14 (IC50 = 17.21 ± 0.28 µM), and 8 (IC50 = 20.73 ± 0.53 µM), showed a very high potential for inhibition of α-glucosidase. Compounds 11, 15, 16, 2, 18, 7, and 5 showed significant inhibition against alpha-glucosidase with IC50 values 22.98 ± 0.34, 24.45 ± 0.53, 27.31 ± 0.29, 40.56 ± 0.60, 41.58 ± 0.47, 46.53 ± 0.76, and 47.46 ± 0.89 µM, respectively. Furthermore, compound 10 (IC50 = 52.63 ± 0.74 µM), 12 (IC50 = 70.80 ± 3.59 µM), 3 (IC50 = 82.68 ± 0.69 µM), 13 (IC50 = 88.89 ± 4.25 µM), and 9 (IC50 = 94.58 ± 0.86 µM) showed moderate activity towards the inhibition of α-glucosidase enzyme. All these compounds were compared with acarbose (IC50 = 875.75 ± 1.24 µM) as a standard α-glucosidase inhibitor. Molecular docking was used to know the molecular bases of such high activities against α-glucosidase. High docking scores were recorded implying significant interactions between the active compounds and amino acid residues of the active site of α-glucosidase.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , Acetofenonas , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo
14.
Environ Res ; 212(Pt D): 113376, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561827

RESUMEN

Microbes (e.g., bacteria and archaea) are indispensable components for the key biological processes of estuarine ecosystems and three main habitats (sediment, particle, and water) are harboring diverse estuarine microbes. However, we still know little about how the microbial community structures, potential keystone species, and network properties change among these three habitats in estuarine ecosystems. In this study, we collected size-fractioned water and sediment samples from the Pearl River Estuary to reveal their microbial diversity, community structures, network properties, and potential keystone taxa. We found that the sediment microbial community was remarkably more diverse than particle-attached (PA) and free-living (FL) communities, whereas its ecological network was less complex in terms of node distance and connectivity. TOC was determined as the main driver of sediment community, while the PA and FL communities were predominantly shaped by NO2-, non-ionic ammonia (NH) and pH. Among the bulk water, there were no significant differences between PA and FL communities in diversity, community structure, and network complexity. However, the PA community was more susceptible to metal elements, suggesting their higher level of involvement in physiological metabolism. Potential keystone taxa among community networks were taxonomically divergent in three habitats. Specifically, Synechococcales (Cyanobacteria) and Actinomarinales (Actinobacteria) exclusively served as the module-hubs in FL network, while members from phylum Proteobacteria and Bacteroidetes were the module-hubs and connectors in PA network. Potential keystone taxa in sediment network were more diverse and covered 9 phyla, including the only archaeal lineage Bathyarchaeia (Crenarchaeota). Overall, our study provided more detailed information about estuarine microbial communities in three habitats, especially the potential keystone species, which provided new perspectives on evaluating further effects of anthropogenic disturbances on estuarine microbes and facilitated the environment monitoring based on microbial community.


Asunto(s)
Cianobacterias , Microbiota , Archaea , Estuarios , Agua
15.
Drug Chem Toxicol ; 45(4): 1796-1807, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33557649

RESUMEN

Ziziphus oxyphylla Edgew is in folk use in Pakistan as an analgesic, anti-inflammatory, and liver ailments. Therefore, we have investigated antioxidant, antinociceptive, anti-inflammatory, and hepatoprotective activities of the isolated compounds (ceanothic acid and zizybrenalic acid) from the chloroform fraction of Z. oxyphylla. Ceanothic acid and zizybrenalic acid showed significant DPPH and H2O2 scavenging activity as compared to control. In the acute toxicity study, ceanothic acid and zizybrenalic acid showed no toxic effects upto 200 mg/kg. The antinociceptive activity shown by ceanothic acid and zizybrenalic acid at 50 mg/kg was 64.28% and 65.35% compared to diclofenac sodium (72.3%) at 50 mg/kg. The percent inhibition of xylene-induced ear edema exhibited by ceanothic acid and zizybrenalic acid at 50 mg/kg was 51.33% and 58.66%, respectively, as compared to diclofenac sodium (72.66%). Both the isolated compounds exhibited inhibition of carrageenan-induced paw edema as compared to control. Hepatoprotection exhibited by zizybrenalic acid was more pronounced than ceanothic acid as observed from the decrease in carbon tetrachloride (CCl4)-induced elevation of serum biomarkers, antioxidant enzymes and lipid peroxidation. Furthermore, zizybrenalic acid produced a marked decline in CCl4-induced prolongation of phenobarbital-induced sleeping duration. Zizybrenalic acid exhibited 55.4 ± 1.37% inhibition of hypotonic solution-induced hemolysis compared to sodium salicylate (75.6 ± 2.15%). The histopathological damage caused by CCl4 was also countered by the administration of ceanothic acid and zizybrenalic acid. Ceanothic acid and zizybrenalic acid exhibited antioxidant, antinociceptive, anti-inflammatory, and hepatoprotective activities. Zizybrenalic acid exhibited better antioxidant, antinociceptive, anti-inflammatory, and hepatoprotective activity than ceanothic acid.


Asunto(s)
Antioxidantes , Ziziphus , Analgésicos/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/toxicidad , Tetracloruro de Carbono/toxicidad , Diclofenaco/toxicidad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/prevención & control , Peróxido de Hidrógeno/toxicidad , Hígado , Triterpenos Pentacíclicos/uso terapéutico , Triterpenos Pentacíclicos/toxicidad , Extractos Vegetales/química , Ziziphus/química
16.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889221

RESUMEN

This study reports the isolation of three new C20 diterpenoid alkaloids, Chitralinine A-C (1-3) from the aerial parts of Delphinium chitralense. Their structures were established on the basis of latest spectral techniques and single crystal X-rays crystallographic studies of chitralinine A described basic skeleton of these compounds. All the isolated Compounds (1-3) showed strong, competitive type inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in comparison to standard allanzanthane and galanthamine however, chitralinine-C remained the most potent with IC50 value of 11.64 ± 0.08 µM against AChE, and 24.31 ± 0.33 µM against BChE, respectively. The molecular docking reflected a binding free energy of -16.400 K Cal-mol-1 for chitralinine-C, having strong interactions with active site residues, TYR334, ASP72, SER122, and SER200. The overall findings suggest that these new diterpenoid alkaloids could serve as lead drugs against dementia-related diseases including Alzheimer's disease.


Asunto(s)
Alcaloides , Delphinium , Diterpenos , Acetilcolinesterasa/metabolismo , Alcaloides/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Delphinium/química , Diterpenos/química , Simulación del Acoplamiento Molecular
17.
Molecules ; 27(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458662

RESUMEN

Alzheimer's disease is an emerging health disorder associated with cognitive decline and memory loss. In this study, six curcumin analogs (1a−1f) were synthesized and screened for in vitro cholinesterase inhibitory potential. On the basis of promising results, they were further investigated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined. The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while significantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel objects in NORT mice behavioral models. A molecular docking study using MOE software was used for validation of the inhibition of cholinesterase(s). It has been indicated from the current research work that the synthesized curcumin analogs enhanced memory functions in mice models and could be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their exact mechanism of action, further studies are suggested.


Asunto(s)
Curcumina , Escopolamina , Acetilcolinesterasa/metabolismo , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Colinérgicos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Ratones , Simulación del Acoplamiento Molecular , Escopolamina/efectos adversos
18.
Arch Microbiol ; 203(7): 4259-4272, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34100100

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.


Asunto(s)
Bacterias , Sedimentos Geológicos , Microbiota , Fenantrenos , Pirenos , Bacterias/efectos de los fármacos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota/efectos de los fármacos , Fenantrenos/farmacología , Pirenos/farmacología , ARN Ribosómico 16S/genética
19.
Arch Microbiol ; 203(6): 3443-3456, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33893827

RESUMEN

Seagrass meadows are vital ecosystems with high productivity and biodiversity and often in the oligotrophic area. Nitrogen usually limits productivity in this ecosystem as the main nutrient factor. Biological nitrogen fixation by diazotrophs in the rhizosphere sediment can introduce "new" nitrogen into the ecosystem. Previous studies revealed that most sulfate-reducing bacteria (SRB) can also fix nitrogen like the nitrogen-fixing bacteria (NFB). Moreover, both sulfate reduction and nitrogen fixation were affected by the organic pollutant. However, rare information is available regarding the NFB and SRB community composition and their temporal response to the pollutant. The quantitative real-time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis have been used to analyze NFB and SRB communities' shifts under different PAHs concentrations. They both experienced a dramatic shift under PAHs stress but exhibited different patterns. SRB could use the low and high concentration PAHs at the early stage of the incubation, while only the low concentration of PAHs could stimulate the growth of NFB through the whole incubation period. The predominant species of NFB communities were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria; while for SRB communities were class Epsilonproteobacteria. Redundancy analysis indicated the significant environmental factors for the two communities were both ammonium and pH (P < 0.05). There existed nifH sequences related to known nitrogen fixing SRB Desulfatibacillum alkenivorans, which confirmed that microbial N2 fixation and sulfate reduction were coupled in the seagrass ecosystem by molecular technique. Our investigation provides new insight into the NFB and SRB community in the seagrass meadow.


Asunto(s)
Bacterias , Sedimentos Geológicos , Microbiota , Hidrocarburos Policíclicos Aromáticos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Deltaproteobacteria/genética , Sedimentos Geológicos/microbiología , Hydrocharitaceae/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , Fijación del Nitrógeno , Oxidorreductasas/genética , Hidrocarburos Policíclicos Aromáticos/farmacología , Sulfatos/metabolismo , Contaminantes Químicos del Agua/farmacología
20.
Arch Microbiol ; 203(9): 5577-5589, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34436633

RESUMEN

Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.


Asunto(s)
Bahías , Ecosistema , China , Genómica , Fijación del Nitrógeno , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA