Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822720

RESUMEN

Photo-rechargeable batteries (PRBs) can provide a compact solution to power autonomous smart devices located at remote sites that cannot be connected with the grid. The study reports the Ruddlesden-Popper (RP) metal halide perovskite (MHP) and molybdenum disulfide (MoS2) hybrid heterojunction-based photocathodes for Li-ion photo-rechargeable battery (Li-PRB) applications. Hybrid Lithium-ion batteries (LIBs) have demonstrated an average discharge specific capacity of 144.46 and 129.17 mAhg-1 for 50 cycles when operating at 176 and 294 mAg-1, respectively compared to the pristine LIBs which have shown specific capacity of 37.48 and 25.60 mAhg-1 under similar conditions. Hybrid Li-PRB has achieved an average dark discharge specific capacities of 128.66 mAhg-1 (capacity retention: 96.56%) which enhanced to 180.67 mAhg-1 under illumination (capacity retention: 97.39%; photo-enhancement: 40.42%) at 64 mAg-1. Excellent performance of hybrid Li-PRB is attributed to the formation of type-II heterojunction that leads to improved crystallinity and film morphology. The PRB has demonstrated a high photo conversion and storage efficiency (PC-SE) of 0.52% under standard 1 Sun illumination, which outperforms other previously reported MHP based LIBs and PRBs. This work provides a novel approach of harnessing the potential of MHPs for PRBs and offers new avenues for MHP photocathodes for various applications beyond PRBs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39116407

RESUMEN

2D metal halide perovskites (MHPs), mainly the studied Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases, have gained enormous popularity as optoelectronic materials owing to their self-assembled multiple quantum well structures, tunable semiconducting properties, and improved structural stability compared to their bulk 3D counterparts. The performance of polycrystalline thin film devices is limited due to the formation of defects and trap states. However, as studied so far, single crystal-based devices can provide a better platform to improve device performance and investigate their fundamental properties more reliably. This Review provides the first comprehensive report on the emerging field of RP and DJ perovskite single crystals and their use in visible light photodetectors of varied device configurations. This Review structurally summarizes the 2D MHP single crystal growth methods and the parameters that control the crystal growth process. In addition, the characterization techniques used to investigate their crystal properties are discussed. The review further provides detailed insights into the working mechanisms as well as the operational performance of 2D MHP single crystal photodetector devices. In the end, to outline the present status and future directions, this Review provides a forward-looking perspective concerning the technical challenges and bottlenecks associated with the developing field of RP and DJ perovskite single crystals. Therefore, this timely review will provide a detailed overview of the fast-growing field of 2D MHP single crystal-based photodetectors as well as ignite new concepts for a wide range of applications including solar cells, photocatalysts, solar H2 production, neuromorphic bioelectronics, memory devices, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA