Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Pharmacol ; 226: 116399, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944396

RESUMEN

Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.


Asunto(s)
Tejido Adiposo , Diabetes Mellitus , Exosomas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cicatrización de Heridas , Humanos , Exosomas/trasplante , Exosomas/metabolismo , Cicatrización de Heridas/fisiología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad Crónica , Úlcera/terapia
2.
Cancer Gene Ther ; 31(5): 667-686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438559

RESUMEN

In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología
3.
Int J Biol Macromol ; 277(Pt 2): 134321, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084423

RESUMEN

Chitosan, a versatile amino polysaccharide biopolymer derived from chitin, exhibits broad-spectrum antimicrobial activity against various pathogenic microorganisms, including gram-negative and gram-positive bacteria, as well as fungi. Due to its ubiquitous use in medications, food, cosmetics, chemicals, and crops, it is an effective antibacterial agent. However, the antimicrobial performance of chitosan is influenced by multiple factors, which have been extensively investigated and reported in the literature. The goal of this review paper is to present a thorough grasp of the mechanisms of action and determining variables of chitosan and its derivatives' antibacterial activity. The article begins by providing a brief background on chitosan and its antimicrobial properties, followed by the importance of understanding the mechanism of action and factors influencing its activity".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA