RESUMEN
Vaccines have historically faced challenges regarding stability, especially in regions lacking a robust cold chain infrastructure. This review delves into established and emergent techniques to improve the thermostability of vaccines. We discuss the widely practiced lyophilization method, effectively transforming liquid vaccine formulations into a solid powdered state, enhancing storage and transportation ability. However, potential protein denaturation during lyophilization necessitates alternative stabilization methods. Cryoprotectants, namely, starch and sugar molecules, have shown promise in protecting vaccine antigens and adjuvants from denaturation and augmenting the stability of biologics during freeze-drying. Biomineralization, a less studied yet innovative approach, utilizes inorganic or organic-inorganic hybrids to encapsulate biological components of vaccines with a particular emphasis on metal-organic coordination polymers. Encapsulation in organic matrices to form particles or microneedles have also been studied in the context of vaccine thermostability, showing some ability to store outside the cold-chain. Unfortunately, few of these techniques have advanced to clinical trials that evaluate differences in storage conditions. Nonetheless, early trials suggest that alternative storage techniques are viable and emphasize the need for more comprehensive studies. This review underscores the pressing need for heat-stable vaccines, especially in light of the increasing global distribution challenges. Combining traditional methods with novel approaches holds promise for the future adaptability of vaccine distribution and use.
Asunto(s)
Calor , Vacunas , Humanos , Estabilidad de Medicamentos , Composición de Medicamentos/métodos , Vacunación , Liofilización/métodosRESUMEN
The influenza A virus causes substantial morbidity and mortality worldwide every year and poses a constant threat of an emergent pandemic. Seasonal influenza vaccination strategies fail to provide complete protection against infection due to antigenic drift and shift. A universal vaccine targeting a conserved influenza epitope could substantially improve current vaccination strategies. The ectodomain of the matrix 2 protein (M2e) of influenza is a highly conserved epitope between virus strains but is also poorly immunogenic. Administration of M2e and the immunostimulatory stimulator of interferon genes (STING) agonist 3'3'-cyclic guanosine-adenosine monophosphate (cGAMP) encapsulated in microparticles made of acetalated dextran (Ace-DEX) has previously been shown to be effective for increasing the immunogenicity of M2e, primarily through T-cell-mediated responses. Here, the immunogenicity of Ace-DEX MPs delivering M2e was further improved by conjugating the M2e peptide to the particle surface in an effort to affect B-cell responses more directly. Conjugated or encapsulated M2e co-administered with Ace-DEX MPs containing cGAMP were used to vaccinate mice, and it was shown that two or three vaccinations could fully protect against a lethal influenza challenge, while only the surface-conjugated antigen constructs could provide some protection against lethal challenge with only one vaccination. Additionally, the use of a reducible linker augmented the T-cell response to the antigen. These results show the utility of conjugating M2e to the surface of a particle carrier to increase its immunogenicity for use as the antigen in a universal influenza vaccine.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Gripe Humana/prevención & control , Dextranos/química , Epítopos , Ratones Endogámicos BALB C , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Anticuerpos AntiviralesRESUMEN
First and last authorship are important metrics of productivity and scholarly success for trainees and professors. For 11 drug delivery-related journals in 2021, the percentage of female first (39.5%) and last (25.7%) authorship was reported. A strong negative correlation, with female first (rp = -0.73) and female last authorship (rp = -0.66), was observed with respect to journal impact factor. In contrast, there was a strong positive correlation with male first and last authorship (rp = 0.71). Papers were â¼1.5 times more likely to have a male first author, and â¼3 times more likely to have a male last author, than females. A female was 22% more likely to have first authorship if the last author was female, although there is an â¼1% increase per year in female authorship with male last authorship, which equates to equality in first authorship by 2044. Considering that drug delivery is composed of engineering, chemistry, and pharmaceutical science disciplines, the observed 25.7% female last authorship does not represent the approximately 35.5% to 50% of professors that are female in these disciplines, internationally. Overall, female authorship in drug delivery-related journals should improve to better represent the work of female senior authors.
Asunto(s)
Factor de Impacto de la Revista , Publicaciones Periódicas como Asunto , Masculino , Humanos , Femenino , AutoriaRESUMEN
Current seasonal influenza vaccines are limited in that they need to be reformulated every year in order to account for the constant mutation of the virus. Hemagglutinin (HA) immunogens have been developed using a computationally optimized broadly reactive antigen (COBRA) methodology, which are able to elicit an antibody response that neutralizes antigenically distinct influenza strains; however, subunit proteins are not immunogenic enough on their own to generate a substantial immune response. Due to this, different delivery strategies and adjuvants can be used to improve immunogenicity. Recently, we reported a new coordination polymer composed of the dipeptide carnosine and zinc (ZnCar) that is able to deliver protein antigens along with CpG to generate a potent immune response. In the present work, ZnCar was used to deliver the COBRA HA immunogen Y2 and the adjuvant CpG. We incorporated Y2 into ZnCar using two different methods to assess which would be the most immunogenic. Mice vaccinated with Y2 and CpG complexed with ZnCar showed an improved humoral and cellular response when compared to mice vaccinated with soluble Y2 and CpG. Further, we demonstrate in vitro that when Y2 and CpG are coordinated with ZnCar, they are protected from degradation at 40 °C for 3 months or 24 °C for 6 months. Overall, ZnCar shows promise as a delivery vehicle for subunit vaccines, given its superior immunogenicity and in vitro storage stability.
Asunto(s)
Carnosina , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , PolímerosRESUMEN
The cGAS-cyclic GMP-AMP (cGAMP)-stimulator of IFN genes (STING) pathway induces a powerful type I IFN (IFN-I) response and is a prime candidate for augmenting immunity in cancer immunotherapy and vaccines. IFN-I also has immune-regulatory functions manifested in several autoimmune diseases and is a first-line therapy for relapsing-remitting multiple sclerosis. However, it is only moderately effective and can induce adverse effects and neutralizing Abs in recipients. Targeting cGAMP in autoimmunity is unexplored and represents a challenge because of the intracellular location of its receptor, STING. We used microparticle (MP)-encapsulated cGAMP to increase cellular delivery, achieve dose sparing, and reduce potential toxicity. In the C57BL/6 experimental allergic encephalomyelitis (EAE) model, cGAMP encapsulated in MPs (cGAMP MPs) administered therapeutically protected mice from EAE in a STING-dependent fashion, whereas soluble cGAMP was ineffective. Protection was also observed in a relapsing-remitting model. Importantly, cGAMP MPs protected against EAE at the peak of disease and were more effective than rIFN-ß. Mechanistically, cGAMP MPs showed both IFN-I-dependent and -independent immunosuppressive effects. Furthermore, it induced the immunosuppressive cytokine IL-27 without requiring IFN-I. This augmented IL-10 expression through activated ERK and CREB. IL-27 and subsequent IL-10 were the most important cytokines to mitigate autoreactivity. Critically, cGAMP MPs promoted IFN-I as well as the immunoregulatory cytokines IL-27 and IL-10 in PBMCs from relapsing-remitting multiple sclerosis patients. Collectively, this study reveals a previously unappreciated immune-regulatory effect of cGAMP that can be harnessed to restrain T cell autoreactivity.
Asunto(s)
Micropartículas Derivadas de Células/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/inmunología , Transducción de Señal/inmunología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Humanos , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Nucleótidos Cíclicos/administración & dosificación , Nucleótidos Cíclicos/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.
Asunto(s)
Células Asesinas Naturales , Proteínas de la Membrana , Animales , Células Presentadoras de Antígenos/metabolismo , Inmunoterapia , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BLRESUMEN
Macrophage-mediated inflammation drives autoimmune and chronic inflammatory diseases. Treatment with anti-inflammatory agents can be an effective strategy to reduce this inflammation; however, high concentrations of these agents can have immune-dampening and other serious side effects. Synergistic combination of anti-inflammatory agents can mitigate dosing by requiring less drug. Multiple anti-inflammatory agents were evaluated in combination for synergistic inhibition of macrophage inflammation. The most potent synergy was observed between dexamethasone (DXM) and fumaric acid esters (e.g., monomethyl fumarate (MMF)). Furthermore, this combination was found to synergistically inhibit inflammatory nuclear factor κB (NF-κB) transcription factor activity. The optimal ratio for synergy was determined to be 1:1, and DXM and MMF were conjugated by esterification at this molar ratio. The DXM-MMF conjugate displayed improved inhibition of inflammation over the unconjugated combination in both murine and human macrophages. In the treatment of human donor monocyte-derived macrophages, the combination of DXM and MMF significantly inhibited inflammatory gene expression downstream of NF-κB and overall performed better than either agent alone. Further, the DXM-MMF conjugate significantly inhibited expression of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome-associated genes. The potent anti-inflammatory activity of the DXM-MMF conjugate in human macrophages indicates that it may have benefits in the treatment of autoimmune and inflammatory diseases.
Asunto(s)
Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Fumaratos/uso terapéutico , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Citocinas/genética , Citocinas/metabolismo , Dexametasona/química , Sinergismo Farmacológico , Fumaratos/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Macrófagos/patología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7RESUMEN
Glioblastoma multiforme (GBM) is the most common form of primary brain cancer and has the highest morbidity rate and current treatments result in a bleak 5-year survival rate of 5.6%. Interstitial therapy is one option to increase survival. Drug delivery by interstitial therapy most commonly makes use of a polymer implant encapsulating a drug which releases as the polymer degrades. Interstitial therapy has been extensively studied as a treatment option for GBM as it provides several advantages over systemic administration of chemotherapeutics. Primarily, it can be applied behind the blood-brain barrier, increasing the number of possible chemotherapeutic candidates that can be used and reducing systemic levels of the therapy while concentrating it near the cancer source. With interstitial therapy, multiple drugs can be released locally into the brain at the site of resection as the polymer of the implant degrades, and the release profile of these drugs can be tailored to optimize combination therapy or maintain synergistic ratios. This can bypass the blood-brain barrier, alleviate systemic toxicity, and resolve drug resistance in the tumor. However, tailoring drug release requires appropriate consideration of the complex relationship between the drug, polymer, and formulation method. Drug physicochemical properties can result in intermolecular bonding with the polymeric matrix and affect drug distribution in the implant depending on the formulation method used. This review is focused on current works that have applied interstitial therapy towards GBM, discusses polymer and formulation methods, and provides design considerations for future implantable biodegradable materials.
Asunto(s)
Antineoplásicos/administración & dosificación , Biopolímeros/química , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos/química , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , HumanosRESUMEN
Acetalated dextran (Ac-DEX) is a tunable acid-labile biopolymer with facile synthesis, aptly designed for the formulation of microparticles for vaccines and immune modulation. Tunability of degradation is achieved based on the kinetics of reaction and the molecular weight of the parent dextran polymer. This tunability translated to differential rates of activation of CD8+ T cells in an in vitro ovalbumin model and illustrated that acid-labile polymer can activate CD8+ T cells at an increased rate compared to acid-insensitive polymers. In addition, Ac-DEX has been used to encapsulate small molecules, deliver nucleotides, transport inorganic molecules, formulate immune modulating therapies and vaccines, and trigger pH responsive constructs for therapy. Here we highlight the properties and results of Ac-DEX nano-/microparticles as well as the use of the polymer in other constructs and chemistries.
Asunto(s)
Biopolímeros/química , Dextranos/química , Ácidos/química , Preparaciones de Acción Retardada , Dextranos/administración & dosificación , Macrófagos/metabolismoRESUMEN
In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell-mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell-mediated inflammatory disease.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Memoria Inmunológica , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Activación de Linfocitos , Metilación , Ratones , FN-kappa B/inmunología , Proteína-Arginina N-Metiltransferasas/genética , Células TH1/inmunología , Células Th2/inmunología , Regulación hacia ArribaRESUMEN
The primary cause of mortality for glioblastoma (GBM) is local tumor recurrence following standard-of-care therapies, including surgical resection. With most tumors recurring near the site of surgical resection, local delivery of chemotherapy at the time of surgery is a promising strategy. Herein drug-loaded polymer scaffolds with two distinct degradation profiles were fabricated to investigate the effect of local drug delivery rate on GBM recurrence following surgical resection. The novel biopolymer, acetalated dextran (Ace-DEX), was compared with commercially available polyester, poly(l-lactide) (PLA). Steady-state doxorubicin (DXR) release from Ace-DEX scaffolds was found to be faster when compared with scaffolds composed of PLA, in vitro. This increased drug release rate translated to improved therapeutic outcomes in a novel surgical model of orthotopic glioblastoma resection and recurrence. Mice treated with DXR-loaded Ace-DEX scaffolds (Ace-DEX/10DXR) resulted in 57% long-term survival out to study completion at 120 days compared with 20% survival following treatment with DXR-loaded PLA scaffolds (PLA/10DXR). Additionally, all mice treated with PLA/10DXR scaffolds exhibited disease progression by day 38, as defined by a 5-fold growth in tumor bioluminescent signal. In contrast, 57% of mice treated with Ace-DEX/10DXR scaffolds displayed a reduction in tumor burden, with 43% exhibiting complete remission. These results underscore the importance of polymer choice and drug release rate when evaluating local drug delivery strategies to improve prognosis for GBM patients undergoing tumor resection.
Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/prevención & control , Acetales/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Dextranos/química , Progresión de la Enfermedad , Doxorrubicina/farmacocinética , Liberación de Fármacos , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Vaccines are the most effective tool for preventing infectious diseases; however, subunit vaccines, considered the safest type, suffer from poor immunogenicity and require adjuvants to create a strong and sustained immune response. As adjuvants, pathogen-associated molecular patterns (PAMPs) offer potent immunostimulatory properties and defined mechanisms of action through their cognate pattern recognition receptors (PRRs). Their activity can be further enhanced through combining two or more PAMPs, particularly those that activate multiple immune signaling pathways. However, the cytosolic localization of many PRRs requires intracellular delivery of PAMPs for optimal biological activity, which is particularly true of the stimulator of interferon genes (STING) PRR. Using acetalated dextran (Ace-DEX) microparticles (MPs) encapsulating STING agonist 3'3'-cyclic GMP-AMP (cGAMP) combined with soluble PAMPS, we screened the effect of codelivery of adjuvants using primary mouse bone marrow derived dendritic cells (BMDCs). We identified that codelivery of cGAMP MPs and soluble Toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) elicited the broadest cytokine response. cGAMP and R848 were then coencapsulated within Ace-DEX MPs via electrospray. Using the model antigen ovalbumin, we observed that Ace-DEX MPs coencapsulating cGAMP and R848 (cGAMP/R848 Ace-DEX MPs) induced antigen-specific cellular immunity, and a balanced Th1/Th2 humoral response that was greater than cGAMP Ace-DEX MPs alone and PAMPs delivered in separate MPs. These data indicate that polymeric Ace-DEX MPs loaded with STING and TLR7/8 agonists represent a potent cellular and humoral vaccine adjuvant.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Moléculas de Patrón Molecular Asociado a Patógenos/administración & dosificación , Acetilación , Animales , Células Cultivadas , Células Dendríticas , Dextranos/química , Femenino , Imidazoles/administración & dosificación , Inmunidad Celular/efectos de los fármacos , Inmunogenicidad Vacunal , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Nucleótidos Cíclicos/administración & dosificación , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Cultivo Primario de Células , Receptores de Reconocimiento de Patrones/antagonistas & inhibidores , Receptores de Reconocimiento de Patrones/inmunología , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/antagonistas & inhibidores , Receptor Toll-Like 8/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunologíaRESUMEN
Previously we have encapsulated host-directed therapy AR-12 into acetalated dextran (Ace-DEX) microparticles (MPs) to mitigate drug toxicity and passively target phagocytic host cells. Herein, we have improved upon our initial emulsion-based formulation of Ace-DEX MPs encapsulating AR-12 (AR-12/MPs) by improving the drug encapsulation efficiency, evaluating sterilization processes for manufacturing, and understanding cellular and in vivo trafficking of the MPs. By using an alternative solvent system, ethyl acetate, we report an increased encapsulation efficiency of AR-12 while maintaining the pH-responsive degradation kinetics of Ace-DEX MPs. To better manufacture this novel antimicrobial formulation, we sterilized AR-12/MPs by gamma irradiation or ethylene oxide and evaluated their efficacy against intracellular Salmonella enterica serovar Typhi. Sterilized AR-12/MPs resulted in a significant reduction in intracellular bacterial burden compared to Blank/MPs. We also characterized intracellular trafficking of Ace-DEX MPs encapsulating fluorophores, which demonstrated internalization of MPs in endo/lysosomal compartments and time and degradation-rate dependent lysosomal escape into cytosolic compartments. Additionally, in vivo toxicity was mitigated following encapsulation of AR-12, where the maximum tolerated dose of AR-12 was increased compared to soluble treatment via intranasal, intravenous, and intraperitoneal administration routes. Following in vivo trafficking of Ace-DEX MPs via the same routes, intranasal administration demonstrated the highest accumulation in the lungs, liver, and kidneys, which persisted out to 240 h. Overall, we have advanced the formulation of this host-directed therapy and broadened the understanding of Ace-DEX MP delivery.
Asunto(s)
Antibacterianos/administración & dosificación , Portadores de Fármacos/química , Pirazoles/administración & dosificación , Salmonella typhi/efectos de los fármacos , Sulfonamidas/administración & dosificación , Fiebre Tifoidea/tratamiento farmacológico , Acetales/química , Animales , Línea Celular , Células Cultivadas , Dextranos/química , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Emulsiones , Femenino , Células Madre Hematopoyéticas , Humanos , Concentración de Iones de Hidrógeno , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Cultivo Primario de Células , Fiebre Tifoidea/microbiologíaRESUMEN
PURPOSE: Although doxorubicin (DXR) has been on the market for many years as an anti-cancer drug, a number of serious dose-limiting toxicities hinder its widespread use. To reduce the known toxicities of soluble DXR, various liposomes have been designed including Doxil, Caelyx, and Myocet. Myocet, a non-PEGylated liposomal formulation containing DXR, was found to reduce the toxicities associated with soluble DXR and has been used in Europe and Canada (but not the US) as a first line therapy. While regarded as successful, Myocet does have some formulation drawbacks including stability, drug release, and an arduous formulation and remote loading method for preparation. METHODS: Our lab has developed a liposomal electrospray process in which formulation and remote loading occurs continuously in one step, cutting down on the total time of production and increasing the drug retention in the liposomes with respect to more conventional methods. Electrosprayed Myocet-like liposomes were then tested in vitro for release kinetics and cytotoxicity with respect to a more conventional formulation method. RESULTS: Myocet-like liposomes manufactured via electrospray had similar DXR loadings, hydrodynamic diameters, morphologies, and cytotoxic profiles as their thin-film hydration counterparts, but their release profiles were drastically prolonged. CONCLUSIONS: Our findings indicate that electrospray is a viable manufacturing procedure to scalably produce Myocet-like liposomes that appear to be more stable than those formulated through thin-film hydration.
Asunto(s)
Doxorrubicina/análogos & derivados , Doxorrubicina/química , Liposomas/química , Antineoplásicos/química , Línea Celular Tumoral , Química Farmacéutica/métodos , Liberación de Fármacos , Humanos , Cinética , Células MCF-7 , Polietilenglicoles/químicaRESUMEN
Francisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.
Asunto(s)
Acetales/química , Antibacterianos/farmacología , Dextranos/química , Portadores de Fármacos/síntesis química , Francisella tularensis/efectos de los fármacos , Pirazoles/farmacología , Sulfonamidas/farmacología , Tularemia/tratamiento farmacológico , Administración Intranasal , Animales , Carga Bacteriana/efectos de los fármacos , Composición de Medicamentos , Sinergismo Farmacológico , Femenino , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/patogenicidad , Gentamicinas/farmacología , Humanos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Bazo/efectos de los fármacos , Bazo/microbiología , Bazo/patología , Análisis de Supervivencia , Tularemia/microbiología , Tularemia/mortalidad , Tularemia/patologíaRESUMEN
Resiquimod is a Toll-like receptor (TLR) 7/8 agonist that has previously been used as a vaccine adjuvant, as a topical treatment of viral lesions and skin cancer, and as an antiviral treatment. We report on the combined application of remote loading and electrospray to produce liposomal resiquimod, with the broader goals of improving drug encapsulation efficiency and scalability of liposome production methods. Drug loading in liposomes increased from less than 1% to greater that 3% by mass when remote loading was used, whether the liposomes were generated by thin-film hydration or electrospray methods. Dynamic light scattering (DLS) determined mean vesicle diameters of 137 ± 11 nm and 103 ± 4 for the thin-film and electrospray methods, respectively. Transmission electron microscopy (TEM) images showed spherical vesicles with sizes consistent with the DLS measurements. In vitro drug release profiles found that most of the drug remained within the liposomes at both pH 5.5 and 7.4. The in vitro bioactivity of the liposomal drug was also demonstrated by the increase in nitrite production when RAW macrophages were exposed to the drug. Our findings indicate that the remotely loaded liposomes formed via the scalable electrospray method have characteristics comparable to those produced via conventional batch methods. The methods discussed here are not limited to the enhanced delivery of resiquimod. Rather, they should be readily adaptable to other compounds compatible with remote loading.
Asunto(s)
Liposomas/química , Membranas Artificiales , Química Farmacéutica , Dispersión Dinámica de Luz , Electroquímica , Microscopía Electrónica de TransmisiónRESUMEN
PURPOSE: Since the adoption of highly active antiretroviral therapy, HIV disease progression has slowed across the world; however, patients are often required to take multiple medications daily of poorly bioavailable drugs via the oral route, leading to gastrointestinal irritation. Recently, long acting antiretroviral injectables that deliver drug for months at a time have moved into late phase clinical trials. Unfortunately, these solid phase crystal formulations have inherent drawbacks in potential dose dumping and a greater likelihood for burst release of drug compared to polymeric formulations. METHODS: Using electrospinning, acetalated dextran scaffolds containing the protease inhibitor saquinavir were created. Grinding techniques were then used to process these scaffolds into injectables which are termed saquinavir microconfetti. Microconfetti was analyzed for in vitro and in vivo release kinetics. RESULTS: Highly saquinavir loaded acetalated dextran electrospun fibers were able to be formed and processed into saquinavir microconfetti while other polymers such as poly lactic-co-glycolic acid and polycaprolactone were unable to do so. Saquinavir microconfetti release kinetics were able to be tuned via drug loading and polymer degradation rates. In vivo, a single subcutaneous injection of saquinavir microconfetti released drug for greater than a week with large tissue retention. CONCLUSIONS: Microconfetti is a uniquely tunable long acting injectable that would reduce the formation of adherence related HIV resistance. Our findings suggest that the injectable microconfetti delivery system could be used for long acting controlled release of saquinavir and other hydrophobic small molecule drugs.
Asunto(s)
Dextranos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Liberación de Fármacos , Inhibidores de la Proteasa del VIH/administración & dosificación , Saquinavir/administración & dosificación , Acetilación , Animales , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/metabolismo , Dextranos/sangre , Portadores de Fármacos/metabolismo , Femenino , Inhibidores de la Proteasa del VIH/sangre , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos ICR , Saquinavir/sangre , Factores de TiempoAsunto(s)
Basófilos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Glucolípidos/inmunología , Alérgenos/inmunología , Antígenos CD1d/metabolismo , Prueba de Desgranulación de los Basófilos , Degranulación de la Célula , Células Cultivadas , Humanos , Inmunoglobulina E/metabolismo , Carne Roja , alfa-Galactosidasa/inmunologíaRESUMEN
OBJECTIVES: The imidazoquinoline family of drugs are Toll-like receptor 7/8 agonists that have previously been used in the treatment of cutaneous leishmaniasis. Because of the hydrophobic nature of imidazoquinolines, they are traditionally not administered systemically for the treatment of visceral leishmaniasis. We formulated liposomal resiquimod, an imidazoquinoline, for the systemic treatment of visceral leishmaniasis. METHODS: By using lipid film hydration with extrusion, we encapsulated resiquimod in liposomes. These liposomes were then injected intravenously to treat BALB/c mice infected with Leishmania donovani. RESULTS: Treatment with liposomal resiquimod significantly decreased the parasite load in the liver, spleen and bone marrow. In addition, resiquimod treatment increased interferon-γ and interleukin-10 production in an antigen recall assay. Resiquimod was shown to be non-toxic in histology and in vitro culture experiments. CONCLUSIONS: FDA-approved resiquimod, in a liposomal formulation, displays promising results in treating visceral leishmaniasis.