RESUMEN
Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-ß/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-ß/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-ß/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Humanos , Línea Celular , Virulencia , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T del Adulto/genética , Provirus/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Desaminasa APOBEC-3G/genéticaRESUMEN
A small proportion of human T-cell leukemia virus type-1 (HTLV-1)-infected individuals develop adult T-cell leukemia/lymphoma, a chemotherapy-resistant lymphoproliferative disease with a poor prognosis. HTLV-1-specific cytotoxic T lymphocytes (CTLs), potential anti-tumor/virus effectors, are impaired in adult T-cell leukemia/lymphoma patients. Here, using Japanese monkeys naturally infected with simian T-cell leukemia/T-lymphotropic virus type-1 (STLV-1) as a model, we demonstrate that short-term-cultured autologous peripheral blood mononuclear cells (PBMCs) can serve as a therapeutic vaccine to activate such CTLs. In a screening test, STLV-1-specific CTL activity was detectable in 8/10 naturally STLV-1-infected monkeys. We conducted a vaccine study in the remaining two monkeys with impaired CTL responses. The short-term-cultured PBMCs of these monkeys spontaneously expressed viral antigens, in a similar way to PBMCs from human HTLV-1 carriers. The first monkey was subcutaneously inoculated with three-day-cultured and mitomycin C (MMC)-treated autologous PBMCs, and then boosted with MMC-treated autologous STLV-1-infected cell line cells. The second monkey was inoculated with autologous PBMC-vaccine alone twice. In addition, a third monkey that originally showed a weak STLV-1-specific CTL response was inoculated with similar autologous PBMC-vaccines. In all three vaccinated monkeys, marked activation of STLV-1-specific CTLs and a mild reduction in the STLV-1 proviral load were observed. Follow-up analyses on the two monkeys vaccinated with PBMCs alone indicated that STLV-1-specific CTL responses peaked at 3-4 months after vaccination, and then diminished but remained detectable for more than one year. The significant reduction in the proviral load and the control of viral expression were associated with CTL activation but also diminished 6 and 12 months after vaccination, respectively, suggesting the requirement for a booster. The vaccine-induced CTLs in these monkeys recognized epitopes in the STLV-1 Tax and/or Envelope proteins, and efficiently killed autologous STLV-1-infected cells in vitro. These findings indicated that the autologous PBMC-based vaccine could induce functional STLV-1-specific CTLs in vivo.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Virus Linfotrópico T Tipo 1 de los Simios , Linfocitos T Citotóxicos , Animales , Humanos , Leucocitos Mononucleares , Macaca fuscata , Provirus , VacunaciónRESUMEN
BACKGROUND: Simian T-cell leukemia virus type 1 (STLV-1) is a retrovirus closely related to human T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia (ATL). It has been shown that Japanese macaques (Macaca fuscata, JMs) are one of the main hosts of STLV-1 and that a high percentage of JMs (up to 60%) are infected with STLV-1; however, the molecular epidemiology of STLV-1 in JMs has not been examined. METHODS: In this study, we analyzed full-length STLV-1 genome sequences obtained from 5 independent troops including a total of 68 JMs. RESULTS: The overall nucleotide heterogeneity was 4.7%, and the heterogeneity among the troops was 2.1%, irrespective of the formation of distinct subclusters in each troop. Moreover, the heterogeneity within each troop was extremely low (>99% genome homology) compared with cases of STLV-1 in African non-human primates as well as humans. It was previously reported that frequent G-to-A single-nucleotide variants (SNVs) occur in HTLV-1 proviral genomes in both ATL patients and HTLV-1 carriers, and that a G-to-A hypermutation is associated with the cellular antiviral restriction factor, Apobec3G. Surprisingly, these SNVs were scarcely observed in the STLV-1 genomes in JMs. CONCLUSIONS: Taken together, these results indicate that STLV-1 genomes in JMs are highly homologous, at least in part due to the lack of Apobec3G-dependent G-to-A hypermutation.
Asunto(s)
Genoma Viral , Macaca fuscata , Virus Linfotrópico T Tipo 1 de los Simios , Animales , Virus Linfotrópico T Tipo 1 de los Simios/genética , Virus Linfotrópico T Tipo 1 de los Simios/aislamiento & purificación , Macaca fuscata/genética , Filogenia , Estudios de Cohortes , Infecciones por Deltaretrovirus/virología , Infecciones por Deltaretrovirus/veterinaria , Infecciones por Deltaretrovirus/epidemiología , Japón , Humanos , Análisis de Secuencia de ADN , Epidemiología Molecular , Variación GenéticaRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression.
Asunto(s)
Células Clonales/virología , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Leucemia-Linfoma de Células T del Adulto/inmunología , Linfocitos T/virología , Adulto , Animales , Linfocitos T CD8-positivos/inmunología , Células Clonales/inmunología , Células Dendríticas/inmunología , Femenino , Productos del Gen tax/inmunología , Infecciones por HTLV-I/transmisión , Infecciones por HTLV-I/virología , Trasplante de Células Madre Hematopoyéticas , Virus Linfotrópico T Tipo 1 Humano/inmunología , Humanos , Leucemia-Linfoma de Células T del Adulto/virología , Trasplante de Hígado/efectos adversos , Macaca fuscata , Masculino , Persona de Mediana Edad , Células T Asesinas Naturales/inmunología , Provirus , Linfocitos T/citología , Carga Viral , Replicación ViralRESUMEN
10-Methyl-aplog-1 (10MA-1), a simplified analog of aplysiatoxin, exhibits a high binding affinity for protein kinase C (PKC) isozymes with minimal tumor-promoting and pro-inflammatory activities. A recent study suggests that 10MA-1 could reactivate latent human immunodeficiency virus (HIV) in vitro for HIV eradication strategy. However, further in vivo studies were abandoned by a dose limit caused by the minimal water solubility of 10MA-1. To overcome this problem, we synthesized a phosphate ester of 10MA-1, 18-O-phospho-10-methyl-aplog-1 (phos-10MA-1), to improve water solubility for in vivo studies. The solubility, PKC binding affinity, and biological activity of phos-10MA-1 were examined in vitro, and the biological activity was comparable with 10MA-1. The pharmacokinetic studies in vivo were also examined, which suggest that further optimization for improving metabolic stability is required in the future.
Asunto(s)
Infecciones por VIH , VIH-1 , Profármacos , Humanos , Profármacos/farmacología , Fosfatos , Ésteres/farmacología , Agua , Linfocitos T CD4-PositivosRESUMEN
Although the current hepatitis B (HB) vaccine comprising yeast-derived small hepatitis B surface antigen (HBsAg) is potent and safe and used worldwide, specific concerns should not be ignored, such as the attenuated prophylaxis against hepatitis B virus (HBV) infection with specific amino acid polymorphisms, called vaccine-escape mutations (VEMs). We investigated a novel HB vaccine consisting of large-HBsAg that covers the shortcomings of the current HB vaccine in a nonhuman primate model. The yeast-derived large-HBsAg was mixed with the adjuvant and used to immunize rhesus macaques, and the induction of antibodies to HBsAg was compared with that of the current HB vaccine. The current HB vaccine predominantly induced antibodies to small-HBsAg, whereas immunization with the large-HBsAg vaccine mainly induced antibodies to the preS1 region. Although the antibodies induced by the current HB vaccine could not prevent infection of HBV with VEMs, the large-HBsAg vaccine-induced antibodies neutralized infection of HBV with VEMs at levels similar to those of the wild type. The HBV genotypes that exhibited attenuated neutralization by induced antibodies differed between these vaccines. In conclusion, the novel HB vaccine consisting of large-HBsAg was revealed to be useful to compensate for shortcomings of the current HB vaccine. The combined use of these HB vaccines may be able to induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Virus de la Hepatitis B/genética , Vacunas contra Hepatitis B/uso terapéutico , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/química , Macaca mulatta , Saccharomyces cerevisiae , Anticuerpos contra la Hepatitis B/genética , Mutación , Hepatitis B/prevención & control , Hepatitis B/tratamiento farmacológicoRESUMEN
Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.
Asunto(s)
Productos del Gen vpr , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , VIH-1/genética , Leucocitos Mononucleares , Macaca fascicularis , Virus de la Inmunodeficiencia de los Simios/genética , Viremia , Replicación ViralRESUMEN
Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.
RESUMEN
BACKGROUND: Simian T-cell leukemia virus type 1 (STLV-1) is disseminated among various non-human primate species and is closely related to human T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Notably, the prevalence of STLV-1 infection in Japanese macaques (JMs) is estimated to be > 60%, much greater than that in other non-human primates; however, the mechanism and mode of STLV-1 transmission remain unknown. The aim of this study is to examine the epidemiological background by which STLV-1 infection is highly prevalent in JMs. RESULTS: The prevalence of STLV-1 in the JMs rearing in our free-range facility reached up to 64% (180/280 JMs) with variation from 55 to 77% among five independent troops. Anti-STLV-1 antibody titers (ABTs) and STLV-1 proviral loads (PVLs) were normally distributed with mean values of 4076 and 0.62%, respectively, which were mostly comparable to those of HTLV-1-infected humans. Our initial hypothesis that some of the macaques might contribute to frequent horizontal STLV-1 transmission as viral super-spreaders was unlikely because of the absence of the macaques exhibiting abnormally high PVLs but poor ABTs. Rather, ABTs and PVLs were statistically correlated (p < 0.0001), indicating that the increasing PVLs led to the greater humoral immune response. Further analyses demonstrated that the STLV-1 prevalence as determined by detection of the proviral DNA was dramatically increased with age; 11%, 31%, and 58% at 0, 1, and 2 years of age, respectively, which was generally consistent with the result of seroprevalence and suggested the frequent incidence of mother-to-child transmission. Moreover, our longitudinal follow-up study indicated that 24 of 28 seronegative JMs during the periods from 2011 to 2012 converted to seropositive (86%) 4 years later; among them, the seroconversion rates of sexually matured (4 years of age and older) macaques and immature macaques (3 years of age and younger) at the beginning of study were comparably high (80% and 89%, respectively), suggesting the frequent incidence of horizontal transmission. CONCLUSIONS: Together with the fact that almost all of the full-adult JMs older than 9 years old were infected with STLV-1, our results of this study demonstrated for the first time that frequent horizontal and mother-to-child transmission may contribute to high prevalence of STLV-1 infection in JMs.
Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Deltaretrovirus/transmisión , Infecciones por Deltaretrovirus/veterinaria , Transmisión de Enfermedad Infecciosa , Transmisión Vertical de Enfermedad Infecciosa , Virus Linfotrópico T Tipo 1 de los Simios/fisiología , Animales , Femenino , Estudios de Seguimiento , Japón , Macaca fuscata/virología , Masculino , Prevalencia , Provirus/genética , Estudios Seroepidemiológicos , Virus Linfotrópico T Tipo 1 de los Simios/genéticaRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo.
Asunto(s)
Infecciones por HTLV-I/virología , Células Madre Hematopoyéticas/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Animales , Linfocitos T CD8-positivos/virología , Células Cultivadas , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Macaca mulatta , Neutrófilos/virologíaRESUMEN
BACKGROUND: Biological information about captive Japanese macaques, including hematology and blood chemistry, is still lacking despite the fact that ethological and ecological data have accumulated during decades of field research. METHODS: Hematological (511 examinations of 280 Japanese macaques) and blood chemistry data (between 33 and 284 examinations from between 29 and 257 individual macaques) in clinically healthy, simian retrovirus-free Japanese macaques tested between 2009 and 2013 were reviewed. RESULTS AND CONCLUSIONS: Specific hematological and blood chemistry data for Japanese macaques without clinical signs of disease were provided in this study. Averages presented can be used as hematological parameters for Japanese macaques. Some differences between Japanese macaques and other closely related macaque species were found. Some parameters varied according to macaque age and sex, as well as regional origin. The data in this study will provide useful clinical indices for Japanese macaques in captive and similar conditions.
Asunto(s)
Análisis Químico de la Sangre/veterinaria , Pruebas Hematológicas/veterinaria , Macaca fuscata/sangre , Animales , Valores de ReferenciaRESUMEN
OBJECTIVE: Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc). DESIGN: To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG). RESULTS: The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals. CONCLUSIONS: The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/sangre , Vacunación , Vacunas contra Hepatitis Viral/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Hidróxido de Aluminio/inmunología , Animales , Callithrix , Células HEK293 , Antígenos de la Hepatitis C/inmunología , Humanos , Inmunidad Celular , Interferón gamma/genética , Ratones , ARN Mensajero/metabolismo , Bazo/citología , Proteínas del Núcleo Viral/inmunologíaRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1) is a delta-type retrovirus that induces malignant and inflammatory diseases during its long persistence in vivo. HTLV-1 can infect various kinds of cells; however, HTLV-1 provirus is predominantly found in peripheral CD4 T cells in vivo. Here we find that TCF1 and LEF1, two Wnt transcription factors that are specifically expressed in T cells, inhibit viral replication through antagonizing Tax functions. TCF1 and LEF1 can each interact with Tax and inhibit Tax-dependent viral expression and activation of NF-κB and AP-1. As a result, HTLV-1 replication is suppressed in the presence of either TCF1 or LEF1. On the other hand, T-cell activation suppresses the expression of both TCF1 and LEF1, and this suppression enables Tax to function as an activator. We analyzed the thymus of a simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaque, and found a negative correlation between proviral load and TCF1/LEF1 expression in various T-cell subsets, supporting the idea that TCF1 and LEF1 negatively regulate HTLV-1 replication and the proliferation of infected cells. Thus, this study identified TCF1 and LEF1 as Tax antagonistic factors in vivo, a fact which may critically influence the peripheral T-cell tropism of this virus.
Asunto(s)
Productos del Gen tax/antagonistas & inhibidores , Virus Linfotrópico T Tipo 1 Humano/fisiología , Factor de Unión 1 al Potenciador Linfoide/fisiología , Factor 1 de Transcripción de Linfocitos T/fisiología , Activación Transcripcional/fisiología , Animales , Línea Celular , Regulación hacia Abajo , Productos del Gen tax/fisiología , Humanos , Macaca , Virus Linfotrópico T Tipo 1 de los Simios/aislamiento & purificación , Carga ViralRESUMEN
Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research. These species are classified as Old-World monkeys (Cercopithecidae), in which the immune-related genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP5 encoding ligands for NKG2D. We found 18 and 11 ULBP5.1 alleles and 11 and 13 ULBP5.2 alleles in rhesus macaques and cynomolgus macaques, respectively. In addition, phylogenetic analyses revealed that ULBP5.2 diverged from a branch of ULBP5.1. These data suggested that human ULBP genes diverged from an ancestral gene of ULBP2-ULBP5 and that ULBP6/RAET1L, specifically identified in human, diverged from an ancestral ULBP2 by a recent gene duplication after the diversification of homininae (human and other higher great apes), which were consistent with the findings in our previous analysis of ULBP2 genes in rhesus and cynomolgus macaques.
Asunto(s)
Variación Genética , Antígenos de Histocompatibilidad Clase I/genética , Animales , Cercopithecidae , Humanos , FilogeniaRESUMEN
Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells.
Asunto(s)
Linfocitos T CD8-positivos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral/métodos , Viremia/inmunologíaRESUMEN
Old World monkey TRIM5α strongly suppresses human immunodeficiency virus type 1 (HIV-1) replication. A fusion protein comprising cynomolgus macaque (CM) TRIM5 and cyclophilin A (CM TRIMCyp) also potently suppresses HIV-1 replication. However, CM TRIMCyp fails to suppress a mutant HIV-1 that encodes a mutant capsid protein containing a SIVmac239-derived loop between α-helices 4 and 5 (L4/5). There are seven amino acid differences between L4/5 of HIV-1 and SIVmac239. Here, we investigated the minimum numbers of amino acid substitutions that would allow HIV-1 to evade CM TRIMCyp-mediated suppression. We performed random PCR mutagenesis to construct a library of HIV-1 variants containing mutations in L4/5, and then we recovered replication-competent viruses from CD4+ MT4 cells that expressed high levels of CM TRIMCyp. CM TRIMCyp-resistant viruses were obtained after three rounds of selection in MT4 cells expressing CM TRIMCyp and these were found to contain four amino acid substitutions (H87R, A88G, P90D and P93A) in L4/5. We then confirmed that these substitutions were sufficient to confer CM TRIMCyp resistance to HIV-1. In a separate experiment using a similar method, we obtained novel CM TRIM5α-resistant HIV-1 strains after six rounds of selection and rescue. Analysis of these mutants revealed that V86A and G116E mutations in the capsid region conferred partial resistance to CM TRIM5α without substantial fitness cost when propagated in MT4 cells expressing CM TRIM5α. These results confirmed and further extended the previous notion that CM TRIMCyp and CM TRIM5α recognize the HIV-1 capsid in different manners.
Asunto(s)
Proteínas de la Cápside/química , Resistencia a la Enfermedad , VIH-1/genética , Proteínas Mutantes Quiméricas/genética , Virus Reordenados/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Regulación de la Expresión Génica , Células HEK293 , VIH-1/inmunología , Interacciones Huésped-Patógeno , Humanos , Macaca fascicularis , Datos de Secuencia Molecular , Mutagénesis , Proteínas Mutantes Quiméricas/inmunología , Mutación , Virus Reordenados/inmunología , Alineación de Secuencia , Transducción de Señal , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Replicación ViralRESUMEN
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.
Asunto(s)
Virus GB-B/fisiología , Hepatitis Viral Animal/virología , Enfermedades de los Monos/virología , Platirrinos/virología , Replicación Viral/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quimera/genética , Quimera/virología , Modelos Animales de Enfermedad , Infecciones por Flaviviridae/virología , Virus GB-B/genética , Virus GB-B/inmunología , Humanos , Datos de Secuencia Molecular , ARN Viral/genética , Vacunas contra Hepatitis Viral/inmunología , Proteínas no Estructurales ViralesRESUMEN
There are four dengue virus (DENV) serotypes. Primary infection with one does not confer protective immunity against the others. We have reported previously that the marmoset (Callithrix jacchus) is a useful primary DENV infection model. It has been reported that secondary DENV infection with a heterotypic serotype induces viraemia kinetics and antibody responses that differ from those in primary infection. Thus, it is important to determine the utility of the marmoset as a model for secondary DENV infection. Marmosets were infected with heterologous DENV by secondary inoculation, and viraemia kinetics and antibody responses were analysed. The marmosets consistently developed high levels of viraemia after the secondary inoculation with heterologous DENV serotypes. IgM responses were lower compared with primary inoculation responses, whilst IgG responses were rapid and high. Neutralizing activities, which possessed serotype cross-reactive activities, were detected as early as 4 days after inoculation. In addition, infectious viraemia titres were higher when assayed with Fcγ receptor-expressing baby hamster kidney (BHK) cells than when assayed with conventional BHK cells, suggesting the presence of infectious virus-antibody immune complexes. After secondary infection with heterotypic DENV, the marmosets demonstrated viraemia kinetics, IgM and IgG responses, and high levels of serotype cross-reactive neutralizing antibody responses, all of which were consistent with secondary DENV infection in humans. The results indicate the marmoset as a useful animal for studying secondary, as well as primary, DENV infection.
Asunto(s)
Anticuerpos Antivirales/inmunología , Callithrix , Coinfección/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Viremia/inmunología , Animales , Callithrix/inmunología , Callithrix/virología , Línea Celular , Coinfección/virología , Cricetinae , Reacciones Cruzadas , Dengue/virología , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Humanos , Viremia/virologíaRESUMEN
Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research fields and they are classified as Old World monkey, in which genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP2 molecules that are ligands for NKG2D. A total of 15 and 11 ULBP2.1 alleles and 11 and 10 ULBP2.2 alleles were identified in rhesus macaques and cynomolgus macaques, respectively. Nucleotide sequences of exons for extra cellular domain were highly polymorphic and more than 70 % were non-synonymous variations in both ULBP2.1 and ULBP2.2. In addition, phylogenetic analyses revealed that the ULBP2.2 was diverged from a branch of ULBP2.1 along with ULBP2s of higher primates. Moreover, when 3D structural models were constructed for the rhesus ULBP2 molecules, residues at presumed contact sites with NKG2D were polymorphic in ULBP2.1 and ULBP2.2 in the rhesus macaque and cynomolgus macaque, respectively. These observations suggest that amino acid replacements at the interaction sites with NKG2D might shape a specific nature of ULBP2 molecules in the Old World monkeys.
Asunto(s)
Variación Genética , Péptidos y Proteínas de Señalización Intercelular/genética , Macaca fascicularis/genética , Macaca mulatta/genética , Alelos , Secuencia de Aminoácidos , Animales , Cercopithecidae/clasificación , Cercopithecidae/genética , Péptidos y Proteínas de Señalización Intercelular/química , Macaca fascicularis/clasificación , Macaca mulatta/clasificación , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , Conformación Proteica , Alineación de SecuenciaRESUMEN
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.