RESUMEN
Mycoplasmas are minute bacteria controlled by very small genomes ranging from 0.6 to 1.4 Mbp. They encompass several important medical and veterinary pathogens that are often associated with a wide range of chronic diseases. The long persistence of mycoplasma cells in their hosts can exacerbate the spread of antimicrobial resistance observed for many species. However, the nature of the virulence factors driving this phenomenon in mycoplasmas is still unclear. Toxin-antitoxin systems (TA systems) are genetic elements widespread in many bacteria that were historically associated with bacterial persistence. Their presence on mycoplasma genomes has never been carefully assessed, especially for pathogenic species. Here we investigated three candidate TA systems in M. mycoides subsp. capri encoding a (i) novel AAA-ATPase/subtilisin-like serine protease module, (ii) a putative AbiEii/AbiEi pair and (iii) a putative Fic/RelB pair. We sequence analyzed fourteen genomes of M. mycoides subsp. capri and confirmed the presence of at least one TA module in each of them. Interestingly, horizontal gene transfer signatures were also found in several genomic loci containing TA systems for several mycoplasma species. Transcriptomic and proteomic data confirmed differential expression profiles of these TA systems during mycoplasma growth in vitro. While the use of heterologous expression systems based on E. coli and B. subtilis showed clear limitations, the functionality and neutralization capacities of all three candidate TA systems were successfully confirmed using M. capricolum subsp. capricolum as a host. Additionally, M. capricolum subsp. capricolum was used to confirm the presence of functional TA system homologs in mycoplasmas of the Hominis and Pneumoniae phylogenetic groups. Finally, we showed that several of these M. mycoides subsp. capri toxins tested in this study, and particularly the subtilisin-like serine protease, could be used to establish a kill switch in mycoplasmas for industrial applications.
Asunto(s)
Mycoplasma/genética , Mycoplasma/metabolismo , Sistemas Toxina-Antitoxina/genética , Animales , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cabras/microbiología , Filogenia , Proteómica/métodos , Transcriptoma/genéticaRESUMEN
Members of the Staphylococcaceae family, particularly those of the genus Staphylococcus, encompass important human and animal pathogens. We collected and characterized Staphylococcaceae strains from apparently healthy and diseased camels (n = 84) and cattle (n = 7) in Somalia and Kenya. We phenotypically characterized the strains, including their antimicrobial inhibitory concentrations. Then, we sequenced their genomes using long-read sequencing, closed their genomes, and subsequently compared and mapped their virulence- and resistance-associated gene pools. Genome-based phylogenetics revealed 13 known Staphylococcaceae and at least two novel species. East African strains of different species encompassed novel sequence types and phylogenetically distant clades. About one-third of the strains had non-wild-type MICs. They were resistant to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, gentamicin, or streptomycin, encoded by tet(K), blaZ/blaARL, mecA/mecA1, msrA/mphC, salA, dfrG, aacA-aphD, and str, respectively. We identified the first methicillin- and multidrug-resistant camel S. epidermidis strain of sequence type (ST) 1136 in East Africa. The pool of virulence-encoding genes was largest in the S. aureus strains, as expected, although other rather commensal strains contained distinct virulence-encoding genes. We identified toxin-antitoxin (TA) systems such as the hicA/hicB and abiEii/abiEi families, reported here for the first time for certain species of Staphylococcaceae. All strains contained at least one intact prophage sequence, mainly belonging to the Siphoviridae family. We pinpointed potential horizontal gene transfers between camel and cattle strains and also across distinct Staphylococcaceae clades and species. IMPORTANCE Camels are a high value and crucial livestock species in arid and semiarid regions of Africa and gain importance giving the impact of climate change on traditional livestock species. Our current knowledge with respect to Staphylococcaceae infecting camels is very limited compared to that for other livestock species. Better knowledge will foster the development of specific diagnostic assays, guide promising antimicrobial treatment options, and inform about potential zoonotic risks. We characterized 84 Staphylococcaceae strains isolated from camels with respect to their antimicrobial resistance and virulence traits. We detected potentially novel Staphylococcus species, resistances to different classes of antimicrobials, and the first camel multidrug-resistant S. epidermidis strain of sequence type 1136.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Bovinos , Humanos , Camelus , Staphylococcus aureus , Infecciones Estafilocócicas/veterinaria , Staphylococcaceae , Pruebas de Sensibilidad Microbiana , Staphylococcus , Antibacterianos/farmacología , Genómica , Kenia , Staphylococcus aureus Resistente a Meticilina/genéticaRESUMEN
Seven bacterial strains isolated from bovine endocarditis in six animals from different geographic regions were investigated in a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences placed all seven isolates on a distinct, monophyletic cluster in the family Neisseriaceae with closest similarity to type strains of Alysiella filiformis (97.06â%) and Kingella kingae (96.34â%). Whole genome sequence analysis of isolates confirmed their species status, with an average nucleotide identity >96â% between isolates and <80â% to other type species of genera of Neisseriaceae while digital DNA-DNA hybridization values were >80â% and<18â%, respectively. The DNA G+C content was 42.5-43.0 mol%. Whole genome sequence based phylogeny showed the isolates being monophyletic and separated from established genera, thereby forming a new genus within the family Neisseriaceae. Similarly, analysis of MALDI-TOF MS reference spectra clustered the isolates close together and clearly separated from other genera, making this the method of choice for identification. Biochemical markers based on classical as well as commercial identification schemes allowed separation from closely related Neisseriaceae genera, even though the new taxon is biochemically not very active. Major fatty acids are C12â:â0, C14â:â0 and C16â:â0. The major quinone is ubiquinone Q-8. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospholipid were predominant. We propose the novel genus Wielerella with the type species Wielerella bovis gen. nov., sp. nov. The type strain is CCUG 44465T (=DSM 113289T=JF 2483T) isolated post mortem from a cow with endocarditis in Switzerland.
Asunto(s)
Endocarditis , Neisseriaceae , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bovinos , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Over a period of 1 year, 270 isolates identified as Taxon 39 of Bisgaard were obtained from the nasopharynx of veal calves at 11 epidemiologically independent Swiss fattening farms. Two isolates from each farm and the Australian Taxon 39 reference strain BNO311 were further characterized by genetic and phenotypic methods. Phylogenetic analysis of 16S rRNA and recN gene sequences placed the isolates in a single, distinct cluster within the genus Mannheimia. As to the rpoB gene, most isolates clustered together, but four strains formed a separate cluster close to Mannheimia varigena. Genome sequence analysis of isolates from both rpoB clusters confirmed their species status, with an average nucleotide identity (ANI) >98.9â% between isolates and <84â% to the closest species, M. varigena. Based upon whole genome sequences, the G+C content was determined as 39.1âmol%. Similarly, analysis of MALDI-TOF MS reference spectra clustered the isolates clearly separated from the other Mannheimia species, making this the method of choice for identification. In addition, numerous biochemical markers based on classical as well as commercial identification schemes were determined, allowing separation from other Mannheimia species and identification of the new taxon. Major fatty acids for strain 17CN0883T are C14â:â0, C16â:â0, C16â:â1 ω7c and C18â:â1 ω7c. Major respiratory quinones are ubiquinone-7 and ubiquinone-8. We propose the name Mannheimia pernigra sp. nov. for former Taxon 39 of Bisgaard. The type strain is 17CN0883T (=CCUG 74657T=DSM 111153T) isolated from a veal calf in Switzerland.
Asunto(s)
Bovinos/microbiología , Mannheimia/clasificación , Filogenia , Sistema Respiratorio/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Mannheimia/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suiza , Ubiquinona/químicaRESUMEN
Bacterial Toxin-Antitoxin systems (TAS) are involved in key biological functions including plasmid maintenance, defense against phages, persistence and virulence. They are found in nearly all phyla and classified into 6 different types based on the mode of inactivation of the toxin, with the type II TAS being the best characterized so far. We have herein developed a new in silico discovery pipeline named TASmania, which mines the >41K assemblies of the EnsemblBacteria database for known and uncharacterized protein components of type I to IV TAS loci. Our pipeline annotates the proteins based on a list of curated HMMs, which leads to >2.106 loci candidates, including orphan toxins and antitoxins, and organises the candidates in pseudo-operon structures in order to identify new TAS candidates based on a guilt-by-association strategy. In addition, we classify the two-component TAS with an unsupervised method on top of the pseudo-operon (pop) gene structures, leading to 1567 "popTA" models offering a more robust classification of the TAs families. These results give valuable clues in understanding the toxin/antitoxin modular structures and the TAS phylum specificities. Preliminary in vivo work confirmed six putative new hits in Mycobacterium tuberculosis as promising candidates. The TASmania database is available on the following server https://shiny.bioinformatics.unibe.ch/apps/tasmania/.
Asunto(s)
Antitoxinas , Toxinas Bacterianas , Bases de Datos de Proteínas , Antitoxinas/química , Antitoxinas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Análisis por Conglomerados , Biología Computacional/métodos , Cadenas de Markov , Programas InformáticosRESUMEN
BACKGROUND: Comparative genomics has seen the development of many software performing the clustering, polymorphism and gene content analysis of genomes at different phylogenetic levels (isolates, species). These tools rely on de novo assembly and/or multiple alignments that can be computationally intensive for large datasets. With a large number of similar genomes in particular, e.g., in surveillance and outbreak detection, assembling each genome can become a redundant and expensive step in the identification of genes potentially involved in a given clinical feature. RESULTS: We have developed deltaRpkm, an R package that performs a rapid differential gene presence evaluation between two large groups of closely related genomes. Starting from a standard gene count table, deltaRpkm computes the RPKM per gene per sample, then the inter-group δRPKM values, the corresponding median δRPKM (m) for each gene and the global standard deviation value of m (sm). Genes with m > = 2 ∗ sm (standard deviation s of all the m values) are considered as "differentially present" in the reference genome group. Our simple yet effective method of differential RPKM has been successfully applied in a recent study published by our group (N = 225 genomes of Listeria monocytogenes) (Aguilar-Bultet et al. Front Cell Infect Microbiol 8:20, 2018). CONCLUSIONS: To our knowledge, deltaRpkm is the first tool to propose a straightforward inter-group differential gene presence analysis with large datasets of related genomes, including non-coding genes, and to output directly a list of genes potentially involved in a phenotype.
Asunto(s)
Bacterias/genética , Genoma Bacteriano , Programas Informáticos , Análisis por Conglomerados , Listeria monocytogenes/genética , Fenotipo , FilogeniaRESUMEN
It is important to monitor the heavy metal pollution in order to identify risk zones and to determine the change in the heavy metal concentration of the atmosphere within the process. For this, it is necessary to carry out measurements for many years; however, this is not possible. Especially from past to present, one of the most effective methods to determine the changes of heavy metal concentrations in the atmosphere is to use the annual tree rings as biomonitors. Perennial plants growing in our country create annual rings, and it is possible to gain information regarding the changes of heavy metal concentrations in that region by determining the heavy metal concentrations in these rings. In this study, it was aimed to determine the annual changes of Pb, Co, and Fe elements' concentrations in these sections by determining the annual rings on the logs taken from the main stem of the cedar tree (Cedrus sp.), which was cut by the end of 2016, in December, 2016, in Kastamonu province. Within the scope of the study, the element concentrations were also determined in the inner and outer bark. As a result of the study, it was found that the heavy metal values in the organelles taken from the road-facing part, especially the heavy metal concentrations in the outer bark were higher than the metal concentrations in the inward-facing part, and that the concentrations changed significantly on organelle and year basis.
Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Cedrus/química , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Madera/química , Contaminación del Aire/análisis , Atmósfera , Contaminación Ambiental/análisisRESUMEN
The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.
Asunto(s)
Vacunas Bacterianas , Mycoplasma , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Mycoplasma/genética , Mycoplasma/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Regulación Bacteriana de la Expresión Génica , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/prevención & control , CabrasRESUMEN
Animal shelters, especially in resource-poor countries, bring together pets from different regions and with different backgrounds. The crowding of such animals often results in infectious diseases, such as respiratory infections. This study characterized Staphylococcaceae from diseased and apparently healthy dogs housed in an animal shelter in Kenya, to determine their antibiotic resistance profiles, their genetic relatedness, and the presence of dominant clones. Therefore, bacteria were collected from all 167 dogs present in the shelter in June 2015 and screened for Staphylococcaceae using standard cultivation techniques. In all, 92 strains were isolated from 85 dogs and subsequently sequenced by PacBio long-read sequencing. Strains encompassed nine validated species, while S. aureus (n = 47), S. pseudintermedius (n = 21), and Mammaliicoccus (M.) sciuri (n = 16) were the three most dominant species. Two S. aureus clones of ST15 (CC15) and ST1292 (CC1) were isolated from 7 and 37 dogs, respectively. All 92 strains isolated were tested for their antimicrobial susceptibility by determining the minimum inhibitory concentrations. In all, 86 strains had resistance-associated minimal inhibitory concentrations to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, kanamycin/gentamicin, or streptomycin. Many virulence-encoding genes were detected in the S. aureus strains, other Staphylococcaceae contained a different set of homologs of such genes. The presence of mobile genetic elements, such as plasmids and prophages, known to facilitate the dissemination of virulence- and resistance-encoding genes, was also assessed. The unsuspected high presence of two S. aureus clones in about 50% of dogs suggests dissemination within the shelter and a human source.IMPORTANCEMicrobiological data from sub-Saharan Africa are scarce compared to data from North America, Europe, or Asia, and data derived from dogs, the man's best friend, kept in sub-Saharan Africa are largely missing. This work presents data on Staphylococcaceae mainly isolated from the nasal cavity of dogs stationed at a Kenyan shelter in 2015. We characterized 92 strains isolated from 85 dogs, diseased and apparently healthy ones. The strains isolated covered nine validated species and we determined their phenotypic resistance and characterized their complete genomes. Interestingly, Staphylococcus aureus of two predominant genetic lineages, likely to be acquired from humans, colonized many dogs. We also detected 15 novel sequence types of Mammaliicoccus sciuri and S. pseudintermedius indicating sub-Saharan-specific phylogenetic lineages. The data presented are baseline data that guide antimicrobial treatment for dogs in the region.
Asunto(s)
Enfermedades de los Perros , Infecciones Estafilocócicas , Animales , Perros , Humanos , Staphylococcus aureus/genética , Kenia , Staphylococcaceae , Filogenia , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Enfermedades de los Perros/microbiologíaRESUMEN
Salmonella (S.) enterica subspecies diarizonae (IIIb) serovar 61:k:1,5,(7) (S. IIIb 61:k:1,5,(7)) is considered to be sheep-associated, as it can be found in the intestine, tonsils and nose of clinically healthy sheep, but it has also been described in separate clinical disorders in sheep. In particular, S. IIIb 61:k:1,5,(7) is described as the causative agent of chronic proliferative rhinitis (CPR) in sheep. In Switzerland, CPR in sheep due to S. IIIb 61:k:1,5,(7) was first described in 2017 in a flock of Texel sheep. Therefore, we assessed the prevalence of S. IIIb 61:k:1,5,(7) within the Swiss sheep population using a representative sampling strategy. From May 2017 to June 2018 a total of 681 nasal swabs from individual clinically healthy sheep of 141 different flocks throughout Switzerland were taken. Swabs were analysed by selective enrichment for the presence of S. IIIb 61:k:1,5,(7). Additionally, antimicrobial resistance of the isolates was determined by broth microdilution. A total of 146 out of 681 nasal swabs tested positive for S. IIIb 61:k:1,5,(7), which corresponds to a prevalence on animal level of 21% (95%CI 18%-25%). In 73 out of 141 flocks tested, at least one sheep tested positive for S. IIIb 61:k:1.5,(7), resulting in a minimal prevalence on flock level of 52% (95%CI 43%-60%). Positive flocks were found in all cantons except the canton of Jura. Adults were significantly more affected than sheep under one year/lambs and positive sheep were found in several breeds. No microbiologically resistant isolates were detected, except for one isolate showing resistance against ampicillin. Because of its widespread occurrence in the Swiss sheep population, further research should focus on the pathogenic impact of S. IIIb 61:k:1,5,(7) on the health status of sheep.
Asunto(s)
Rinitis , Salmonelosis Animal , Salmonella enterica , Enfermedades de las Ovejas , Animales , Antibacterianos , Farmacorresistencia Bacteriana , Prevalencia , Rinitis/microbiología , Rinitis/veterinaria , Salmonella , Salmonelosis Animal/microbiología , Serogrupo , Ovinos , Enfermedades de las Ovejas/microbiología , Suiza/epidemiologíaRESUMEN
Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target.
Asunto(s)
Antitoxinas , Mycobacterium tuberculosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Chaperonas Moleculares/genética , Mycobacterium tuberculosis/genética , ARN Mensajero/genética , RibosomasRESUMEN
This protocol describes a synthetic genomics pipeline to clone and engineer the entire 190-kbp genome of the African swine fever virus (ASFV) genotype II in yeast using transformation-associated recombination cloning. The viral genome was cloned using DNA directly extracted from a clinical sample. In addition, the precise deletion of a non-essential gene and its replacement by a synthetic reporter gene cassette are presented. This protocol is applicable to other ASFV genotypes and other large DNA viruses.
Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Animales , ADN Viral/genética , Genómica , Porcinos , Biología SintéticaRESUMEN
We present the complete genomes of four Brucella suis biovar 2 isolates that were obtained from wild boars in Switzerland in 2008 and 2009. Genomes were sequenced with PacBio technology, contained two chromosomes each, had a genome size of 3.3 Mbp, and contained more than 3,225 genes per genome.
RESUMEN
Toxin-antitoxin systems (TASs) are widely distributed in prokaryotes and encode pairs of genes involved in many bacterial biological processes and mechanisms, including pathogenesis. The TASs have not been extensively studied in Listeria monocytogenes (Lm), a pathogenic bacterium of the Firmicutes phylum causing infections in animals and humans. Using our recently published TASmania database, we focused on the known and new putative TASs in 352 Listeria monocytogenes genomes and identified the putative core gene TASs (cgTASs) with the Pasteur BIGSdb-Lm database and, by complementarity, the putative accessory gene TAS (acTASs). We combined the cgTASs with those of an additional 227 L. monocytogenes isolates from our previous studies containing metadata information. We discovered that the differences in 14 cgTAS alleles are sufficient to separate the four main lineages of Listeria monocytogenes. Analyzing these differences in more details, we uncovered potentially co-evolving residues in some pairs of proteins in cgTASs, probably essential for protein-protein interactions within the TAS complex.
Asunto(s)
Toxinas Bacterianas/metabolismo , Listeria monocytogenes/fisiología , Sistemas Toxina-Antitoxina , Animales , Antitoxinas , Proteínas Bacterianas/genética , Genoma , Genoma Bacteriano , Genómica , Humanos , Toxinas Biológicas , VirulenciaRESUMEN
Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.
Asunto(s)
Núcleo Celular/metabolismo , Orthomyxoviridae/fisiología , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Ribonucleoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas no Estructurales Virales/metabolismoRESUMEN
Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.
RESUMEN
We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Infecciones por Orthomyxoviridae/virología , Análisis de Supervivencia , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/metabolismoRESUMEN
Influenza virus has a segmented genome composed of eight negative stranded RNA segments. Each segment is covered with NP forming ribonucleoproteins (vRNPs) and carries a copy of the heterotrimeric polymerase complex. As a rare phenomenon among the RNA viruses, the viral replication occurs in the nucleus and therefore implies interactions between host and viral factors, such as between importin alpha and nucleoprotein. In the present study we report that through binding with the human nuclear receptor importin α5 (Impα5), the viral NP is no longer oligomeric but maintained as a monomer inside the complex. In this regard, Impα5 acts as a chaperone until NP is delivered in the nucleus for viral RNA encapsidation. Moreover, we show that the association of NP with the host transporter does not impair the binding of NP to RNA. The complex human Impα5-NP binds RNA with the same affinity as wt NP alone, whereas engineered monomeric NP through point mutations binds RNA with a strongly reduced affinity.
Asunto(s)
Unión Competitiva , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , alfa Carioferinas/metabolismo , Calorimetría , Núcleo Celular/metabolismo , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Proteínas de la Nucleocápside , Mutación Puntual , ARN Viral/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Recombinación Genética , Ultracentrifugación , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , alfa Carioferinas/genéticaRESUMEN
During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed.
Asunto(s)
Nucleosomas/metabolismo , Orthomyxoviridae/metabolismo , Proteínas Virales/metabolismo , Animales , Histonas/análisis , Histonas/química , Nucleoproteínas/metabolismo , Unión Proteica , Ribonucleoproteínas/metabolismo , XenopusRESUMEN
During influenza virus infection, viral ribonucleoproteins (vRNPs) are replicated in the nucleus and must be exported to the cytoplasm before assembling into mature viral particles. Nuclear export is mediated by the cellular protein Crm1 and putatively by the viral protein NEP/NS2. Proteolytic cleavage of NEP defines an N-terminal domain which mediates RanGTP-dependent binding to Crm1 and a C-terminal domain which binds to the viral matrix protein M1. The 2.6 A crystal structure of the C-terminal domain reveals an amphipathic helical hairpin which dimerizes as a four-helix bundle. The NEP-M1 interaction involves two critical epitopes: an exposed tryptophan (Trp78) surrounded by a cluster of glutamate residues on NEP, and the basic nuclear localization signal (NLS) of M1. Implications for vRNP export are discussed.