RESUMEN
Pancreatic ß cells are responsible for maintaining glucose homeostasis; their absence or malfunction results in diabetes mellitus. Although there is evidence that long noncoding RNAs (lncRNAs) play important roles in development and disease, none have been investigated in vivo in the context of pancreas development. In this study, we demonstrate that ßlinc1 (ß-cell long intergenic noncoding RNA 1), a conserved lncRNA, is necessary for the specification and function of insulin-producing ß cells through the coordinated regulation of a number of islet-specific transcription factors located in the genomic vicinity of ßlinc1. Furthermore, deletion of ßlinc1 results in defective islet development and disruption of glucose homeostasis in adult mice.
Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular , Sistema Endocrino/citología , Sistema Endocrino/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Intolerancia a la Glucosa/genética , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genéticaRESUMEN
DNA replication is a stochastic process with replication forks emanating from multiple replication origins. The origins must be licenced in G1, and the replisome activated at licenced origins in order to generate bi-directional replication forks in S-phase. Differential firing times lead to origin interference, where a replication fork from an origin can replicate through and inactivate neighbouring origins (origin obscuring). We developed a Bayesian algorithm to characterize origin firing statistics from Okazaki fragment (OF) sequencing data. Our algorithm infers the distributions of firing times and the licencing probabilities for three consecutive origins. We demonstrate that our algorithm can distinguish partial origin licencing and origin obscuring in OF sequencing data from Saccharomyces cerevisiae and human cell types. We used our method to analyse the decreased origin efficiency under loss of Rat1 activity in S. cerevisiae, demonstrating that both reduced licencing and increased obscuring contribute. Moreover, we show that robust analysis is possible using only local data (across three neighbouring origins), and analysis of the whole chromosome is not required. Our algorithm utilizes an approximate likelihood and a reversible jump sampling technique, a methodology that can be extended to analysis of other mechanistic processes measurable through Next Generation Sequencing data.
Asunto(s)
Algoritmos , Replicación del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Origen de Réplica/genética , Teorema de Bayes , Cromosomas/genética , ADN/biosíntesis , ADN/genética , Exorribonucleasas/genética , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Procesos EstocásticosRESUMEN
The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.
Asunto(s)
Tetrahymena thermophila , Tetrahymena thermophila/genética , Ecosistema , Genómica , Eucariontes , LaboratoriosRESUMEN
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.
Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , L-Lactato Deshidrogenasa , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ácido Láctico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , MasculinoRESUMEN
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.
Asunto(s)
Diabetes Mellitus/genética , Insulina/biosíntesis , Mutación/genética , Precursores de Proteínas/genética , Análisis Mutacional de ADN , Cartilla de ADN/genética , Dosificación de Gen , Genes Recesivos/genética , Humanos , Recién Nacido , Insulina/genética , Masculino , Sondas de OligonucleótidosRESUMEN
In metazoan cells, DNA replication initiates from thousands of genomic loci scattered throughout the genome called DNA replication origins. Origins are strongly associated with euchromatin, particularly open genomic regions such as promoters and enhancers. However, over a third of transcriptionally silent genes are associated with DNA replication initiation. Most of these genes are bound and repressed by the Polycomb repressive complex-2 (PRC2) through the repressive H3K27me3 mark. This is the strongest overlap observed for a chromatin regulator with replication origin activity. Here, we asked whether Polycomb-mediated gene repression is functionally involved in recruiting DNA replication origins to transcriptionally silent genes. We show that the absence of EZH2, the catalytic subunit of PRC2, results in increased DNA replication initiation, specifically in the vicinity of EZH2 binding sites. The increase in DNA replication initiation does not correlate with transcriptional de-repression or the acquisition of activating histone marks but does correlate with loss of H3K27me3 from bivalent promoters.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Animales , Histonas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina , Replicación del ADN/genética , ADNRESUMEN
Correct endoplasmic reticulum (ER) function is critical for the health of secretory cells, such as the pancreatic ß-cell, and ER stress is often a contributory factor to ß-cell death in type 2 diabetes. We have used an insulin-secreting cell line with inducible expression of dominant negative (DN) HNF1α, a transcription factor vital for correct ß-cell development and function, to show that HNF1α is required for Xbp1 transcription and maintenance of the normal ER stress response. DN HNF1α expression sensitizes the ß-cell to ER stress by directly down-regulating Xbp1 transcription, whereas Atf6 is unaffected. Furthermore, DN HNF1α alters calcium homeostasis, resulting in elevated cytoplasmic calcium and increased store-operated calcium entry, whereas mitochondrial calcium uptake is normal. Loss of function of XBP1 is toxic to the ß-cell and decreases production of the ER chaperone BiP, even in the absence of ER stress. DN HNF1α-induced sensitivity to cyclopiazonic acid can be partially rescued with the chemical chaperone tauroursodeoxycholate. Rat insulin 2 promoter-DN HNF1α mouse islets express lower levels of BiP mRNA, synthesize less insulin, and are sensitized to ER stress relative to matched control mouse islets, suggesting that this mechanism is also operating in vivo.
Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Regulación hacia Abajo/fisiología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/biosíntesis , Respuesta de Proteína Desplegada/fisiología , Animales , Calcio/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/citología , Ratones , Regiones Promotoras Genéticas/fisiología , Ratas , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteína 1 de Unión a la X-BoxRESUMEN
OBJECTIVE: Androgens are important modulators of immune cell function. The local generation of active androgens from circulating precursors is an important mediator of androgen action in peripheral target cells or tissues. We aimed to characterize the activation of classic and 11-oxygenated androgens in human peripheral blood mononuclear cells (PBMCs). METHODS: PBMCs were isolated from healthy male donors and incubated ex vivo with precursors and active androgens of the classic and 11-oxygenated androgen pathways. Steroids were quantified by liquid chromatography-tandem mass spectrometry. The expression of genes encoding steroid-metabolizing enzymes was assessed by quantitative PCR. RESULTS: PBMCs generated eight-fold higher amounts of the active 11-oxygenated androgen 11-ketotestosterone than the classic androgen testosterone from their respective precursors. We identified the enzyme AKR1C3 as the major reductive 17ß-hydroxysteroid dehydrogenase in PBMCs responsible for both conversions and found that within the PBMC compartment natural killer cells are the major site of AKRC13 expression and activity. Steroid 5α-reductase type 1 catalyzed the 5α-reduction of classic but not 11-oxygenated androgens in PBMCs. Lag time prior to the separation of cellular components from whole blood increased serum 11-ketotestosterone concentrations in a time-dependent fashion, with significant increases detected from two hours after blood collection. CONCLUSIONS: 11-Oxygenated androgens are the preferred substrates for androgen activation by AKR1C3 in PBMCs, primarily conveyed by natural killer cell AKR1C3 activity, yielding 11-ketotestosterone the major active androgen in PBMCs. Androgen metabolism by PBMCs can affect the results of serum 11-ketotestosterone measurements, if samples are not separated in a timely fashion. SIGNIFICANCE STATEMENT: We show that human peripheral blood mononuclear cells (PBMCs) preferentially activate 11-ketotestosterone rather than testosterone when incubated with precursors of both the classic and the adrenal-derived 11-oxygenated androgen biosynthesis pathways. We demonstrate that this activity is catalyzed by the enzyme AKR1C3, which we found to primarily reside in natural killer cells, major contributors to the anti-viral immune defense. This potentially links intracrine 11-oxygenated androgen generation to the previously observed decreased NK cell cytotoxicity and increased infection risk in primary adrenal insufficiency. In addition, we show that PBMCs continue to generate 11-ketotestosterone if the cellular component of whole blood samples is not removed in a timely fashion, which could affect measurements of this active androgen in routine clinical biochemistry.
Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Andrógenos/metabolismo , Leucocitos Mononucleares/metabolismo , Cromatografía Liquida , Humanos , Masculino , Espectrometría de Masas en Tándem , Testosterona/análogos & derivados , Testosterona/metabolismoRESUMEN
Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an â¼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.
Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Diabetes Mellitus/genética , Insulina/genética , Páncreas/metabolismo , Mutación Puntual , Proteínas Represoras/genética , Transactivadores/genética , Alelos , Animales , Cromatina/química , Cromatina/patología , Proteínas de Unión al ADN/deficiencia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Insulina/deficiencia , Ratones , Ratones Transgénicos , Páncreas/crecimiento & desarrollo , Páncreas/patología , Regiones Promotoras Genéticas , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Transcripción GenéticaRESUMEN
BACKGROUNDIdiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess, and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype.METHODSIn fasted, matched IIH (n = 97) and control (n = 43) patients, we assessed glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case-control study.RESULTSWe demonstrate an insulin- and leptin-resistant phenotype in IIH in excess of that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed toward depot-specific lipogenesis.CONCLUSIONThese data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improve cardiovascular outcomes.FUNDINGThis study was supported by the UK NIHR (NIHR-CS-011-028), the UK Medical Research Council (MR/K015184/1), Diabetes UK, Wellcome Trust (104612/Z/14/Z), the Sir Jules Thorn Award, and the Midlands Neuroscience Teaching and Research Fund.
Asunto(s)
Adipocitos/metabolismo , Glucemia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidad , Seudotumor Cerebral , Tejido Adiposo/metabolismo , Adulto , Biopsia , Estudios de Casos y Controles , Femenino , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/fisiopatología , Seudotumor Cerebral/metabolismo , Seudotumor Cerebral/fisiopatología , Adulto JovenRESUMEN
The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ß cells in vivo. Here, we show that the deletion of PHD3 specifically in ß cells (ßPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ßPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ßPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ß cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.
Asunto(s)
Ácidos Grasos/efectos adversos , Glucosa/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/enzimología , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Glucólisis , Humanos , Secreción de Insulina , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Procolágeno-Prolina Dioxigenasa/genéticaRESUMEN
Transcriptionally mature and immature ß-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in ß-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH ß-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH ß-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the ß-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in ß-cell maturity, might be important for the maintenance of islet function.
Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Cultivo Primario de Células , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders.
Asunto(s)
ADN/biosíntesis , ADN/química , Origen de Réplica/genética , Animales , Composición de Base , Secuencia de Bases , Carcinogénesis , Diferenciación Celular , Células Cultivadas , Replicación del ADN/genética , Genoma Humano/genética , Heterocromatina/genética , Humanos , Ratones , Motivos de Nucleótidos , Transcripción GenéticaRESUMEN
Vitamin-D-binding protein (DBP) or group-specific component of serum (GC-globulin) carries vitamin D metabolites from the circulation to target tissues. DBP is highly localized to the liver and pancreatic α cells. Although DBP serum levels, gene polymorphisms, and autoantigens have all been associated with diabetes risk, the underlying mechanisms remain unknown. Here, we show that DBP regulates α cell morphology, α cell function, and glucagon secretion. Deletion of DBP leads to smaller and hyperplastic α cells, altered Na+ channel conductance, impaired α cell activation by low glucose, and reduced rates of glucagon secretion both in vivo and in vitro. Mechanistically, this involves reversible changes in islet microfilament abundance and density, as well as changes in glucagon granule distribution. Defects are also seen in ß cell and δ cell function. Immunostaining of human pancreata reveals generalized loss of DBP expression as a feature of late-onset and long-standing, but not early-onset, type 1 diabetes. Thus, DBP regulates α cell phenotype, with implications for diabetes pathogenesis.
Asunto(s)
Comunicación Celular/fisiología , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Proteína de Unión a Vitamina D/metabolismo , Vitamina D/metabolismo , Animales , Transporte Biológico/fisiología , Secreciones Corporales/metabolismo , Humanos , Ratones Noqueados , FenotipoRESUMEN
DNA replication starts with the opening of DNA at sites called DNA replication origins. From the single sequence-specific DNA replication origin of the small Escherichia coli genome, up to thousands of origins that are necessary to replicate the large human genome, strict sequence specificity has been lost. Nevertheless, genome-wide analyses performed in the recent years, using different mapping methods, demonstrated that there are precise locations along the metazoan genome from which replication initiates. These sites contain relaxed sequence consensus and epigenetic features. There is flexibility in the choice of origins to be used during a given cell cycle, probably imposed by evolution and developmental constraints. Here, we will briefly describe their main features.
Asunto(s)
Replicación del ADN , Origen de Réplica , Animales , Ciclo Celular , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Motivos de Nucleótidos , Levaduras/química , Levaduras/genéticaRESUMEN
Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.
Asunto(s)
Envejecimiento/metabolismo , Antiinflamatorios/sangre , Citocinas/sangre , Metaboloma/efectos de los fármacos , Músculo Esquelético/metabolismo , Niacinamida/análogos & derivados , Transcriptoma/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Envejecimiento/efectos de los fármacos , Estudios Transversales , Citocinas/efectos de los fármacos , Método Doble Ciego , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , NAD/metabolismo , Niacinamida/farmacología , Compuestos de PiridinioRESUMEN
Recent studies have uncovered thousands of long non-coding RNAs (lncRNAs) in human pancreatic ß cells. ß cell lncRNAs are often cell type specific and exhibit dynamic regulation during differentiation or upon changing glucose concentrations. Although these features hint at a role of lncRNAs in ß cell gene regulation and diabetes, the function of ß cell lncRNAs remains largely unknown. In this study, we investigated the function of ß cell-specific lncRNAs and transcription factors using transcript knockdowns and co-expression network analysis. This revealed lncRNAs that function in concert with transcription factors to regulate ß cell-specific transcriptional networks. We further demonstrate that the lncRNA PLUTO affects local 3D chromatin structure and transcription of PDX1, encoding a key ß cell transcription factor, and that both PLUTO and PDX1 are downregulated in islets from donors with type 2 diabetes or impaired glucose tolerance. These results implicate lncRNAs in the regulation of ß cell-specific transcription factor networks.
Asunto(s)
Redes Reguladoras de Genes/genética , Células Secretoras de Insulina/metabolismo , ARN Largo no Codificante/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Familia de Multigenes , Fenotipo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
Pancreatic ß cells adapt to compensate for increased metabolic demand during insulin resistance. Although the microRNA pathway has an essential role in ß cell proliferation, the extent of its contribution is unclear. Here, we report that miR-184 is silenced in the pancreatic islets of insulin-resistant mouse models and type 2 diabetic human subjects. Reduction of miR-184 promotes the expression of its target Argonaute2 (Ago2), a component of the microRNA-induced silencing complex. Moreover, restoration of miR-184 in leptin-deficient ob/ob mice decreased Ago2 and prevented compensatory ß cell expansion. Loss of Ago2 during insulin resistance blocked ß cell growth and relieved the regulation of miR-375-targeted genes, including the growth suppressor Cadm1. Lastly, administration of a ketogenic diet to ob/ob mice rescued insulin sensitivity and miR-184 expression and restored Ago2 and ß cell mass. This study identifies the targeting of Ago2 by miR-184 as an essential component of the compensatory response to regulate proliferation according to insulin sensitivity.
Asunto(s)
Proteínas Argonautas/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Animales , Proliferación Celular , Dieta Cetogénica , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Resistencia a la Insulina/genética , Ratones , Ratones Obesos , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.