Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Brain Res ; 242(2): 321-336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059986

RESUMEN

Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.


Asunto(s)
Anhedonia , Enfermedad de Parkinson , Humanos , Ratas , Animales , Anhedonia/fisiología , Ratas Wistar , Tirosina 3-Monooxigenasa , Calidad de Vida , Enfermedad de Parkinson/patología , Oxidopamina , Antidepresivos , Sacarosa , Modelos Animales de Enfermedad
2.
Exp Physiol ; 106(4): 1038-1060, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512049

RESUMEN

NEW FINDINGS: What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT: Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.


Asunto(s)
Plexo Celíaco , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Plexo Celíaco/metabolismo , Plexo Celíaco/patología , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Ratas
3.
Neuroscience ; 521: 1-19, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116741

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratas , Masculino , Animales , Dopamina , Receptores Dopaminérgicos , Cerebelo/metabolismo , Oxidopamina , Modelos Animales de Enfermedad
4.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361935

RESUMEN

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Diabetes Mellitus Experimental/terapia , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Ratas , Porcinos
5.
Neuroscience ; 460: 88-106, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631218

RESUMEN

Deep brain stimulation (DBS) in Parkinson's disease (PD) alters neuronal function and network communication to improve motor symptoms. The subthalamic nucleus (STN) is the most common DBS target for PD, but some patients experience adverse effects on memory and cognition. Previously, we reported that DBS of the ventral anterior (VA) and ventrolateral (VL) nuclei of the thalamus and at the interface between the two (VA|VL), collectively VA-VL, relieved forelimb akinesia in the hemiparkinsonian 6-hydroxydopamine (6-OHDA) rat model. To determine the mechanism(s) underlying VA-VL DBS efficacy, we examined how motor cortical neurons respond to VA-VL DBS using single-unit recording electrodes in anesthetized 6-OHDA lesioned rats. VA-VL DBS increased spike frequencies of primary (M1) and secondary (M2) motor cortical pyramidal cells and M2, but not M1, interneurons. To explore the translational merits of VA-VL DBS, we compared the therapeutic window, rate of stimulation-induced dyskinesia onset, and effects on memory between VA-VL and STN DBS. VA-VL and STN DBS had comparable therapeutic windows, induced dyskinesia at similar rates in hemiparkinsonian rats, and adversely affected performance in the novel object recognition (NOR) test in cognitively normal and mildly impaired sham animals. Interestingly, a subset of sham rats with VA-VL implants showed severe cognitive deficits with DBS off. VA-VL DBS improved NOR test performance in these animals. We conclude that VA-VL DBS may exert its therapeutic effects by increasing pyramidal cell activity in the motor cortex and interneuron activity in the M2, with plausible potential to improve memory in PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Humanos , Oxidopamina/toxicidad , Enfermedad de Parkinson/terapia , Ratas , Tálamo
6.
Neurosci Lett ; 739: 135443, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33141067

RESUMEN

Parkinson's Disease (PD) patients undergoing subthalamic nucleus deep brain stimulation (STN-DBS) therapy can reduce levodopa equivalent daily dose (LEDD) by approximately 50 %, leading to less symptoms of dyskinesia. The underlying mechanisms contributing to this reduction remain unclear, but studies posit that STN-DBS may increase striatal dopamine levels by exciting remaining dopaminergic cells in the substantia nigra pars compacta (SNc). Yet, no direct evidence has shown how SNc neuronal activity responds during STN-DBS in PD. Here, we use a hemiparkinsonian rat model of PD and employ in vivo electrophysiology to examine the effects of STN-DBS on SNc neuronal spiking activity. We found that 43 % of SNc neurons in naïve rats reduced their spiking frequency to 29.8 ± 18.5 % of baseline (p = 0.010). In hemiparkinsonian rats, a higher number of SNc neurons (88 % of recorded cells) decreased spiking frequency to 61.6 ± 4.4 % of baseline (p = 0.030). We also noted that 43 % of SNc neurons in naïve rats increased spiking frequency from 0.2 ± 0.0 Hz at baseline to 1.8 ± 0.3 Hz during stimulation, but only 1 SNc neuron from 1 hemiparkinsonian rat increased its spiking frequency by 12 % during STN-DBS. Overall, STN-DBS decreased spike frequency in the majority of recorded SNc neurons in a rat model of PD. Less homogenous responsiveness in directionality in SNc neurons during STN-DBS was seen in naive rats. Plausibly, poly-synaptic network signaling from STN-DBS may underlie these changes in SNc spike frequencies.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Porción Compacta de la Sustancia Negra/fisiopatología , Núcleo Subtalámico/fisiopatología , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Masculino , Enfermedad de Parkinson/fisiopatología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA