Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099598

RESUMEN

The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration. In the present study, we used adult zebrafish (Danio rerio) to characterize signalling pathways involved in the early stages of gill regeneration. Regeneration of the gills was induced by resection of gill filaments and observed over a period of up to 10 days. We screened for the effects on regeneration of the drugs SU5402, dorsomorphin and LY411575, which inhibit FGF, BMP or Notch signalling pathways, respectively. Exposure to each drug for 5 days significantly reduced regrowth of filament tips in regenerating tissue, compared with unresected controls. In separate experiments under normal conditions of regeneration, we used reverse transcription quantitative PCR and observed an increased expression of genes encoding for the bone morphogenetic factor, Bmp2b, fibroblast growth factor, Fgf8a, a transcriptional regulator (Her6) involved in Notch signalling, and Sonic Hedgehog (Shha), in regenerating gills at 10 day post-resection, compared with unresected controls. In situ hybridization confirmed that all four genes were expressed in regenerating gill tissue. This study implicates BMP, FGF, Notch and Shh signalling in gill regeneration in zebrafish.


Asunto(s)
Branquias , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Branquias/metabolismo , Proteínas Hedgehog , Transducción de Señal/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Pez Cebra/genética , Mamíferos/metabolismo
2.
Dev Dyn ; 251(4): 645-661, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599606

RESUMEN

BACKGROUND: Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS: Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS: This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.


Asunto(s)
Lamina Tipo A , Laminopatías , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Músculo Esquelético , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Nature ; 539(7627): 89-92, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27706137

RESUMEN

The fin-to-limb transition represents one of the major vertebrate morphological innovations associated with the transition from aquatic to terrestrial life and is an attractive model for gaining insights into the mechanisms of morphological diversity between species. One of the characteristic features of limbs is the presence of digits at their extremities. Although most tetrapods have limbs with five digits (pentadactyl limbs), palaeontological data indicate that digits emerged in lobed fins of early tetrapods, which were polydactylous. How the transition to pentadactyl limbs occurred remains unclear. Here we show that the mutually exclusive expression of the mouse genes Hoxa11 and Hoxa13, which were previously proposed to be involved in the origin of the tetrapod limb, is required for the pentadactyl state. We further demonstrate that the exclusion of Hoxa11 from the Hoxa13 domain relies on an enhancer that drives antisense transcription at the Hoxa11 locus after activation by HOXA13 and HOXD13. Finally, we show that the enhancer that drives antisense transcription of the mouse Hoxa11 gene is absent in zebrafish, which, together with the largely overlapping expression of hoxa11 and hoxa13 genes reported in fish, suggests that this enhancer emerged in the course of the fin-to-limb transition. On the basis of the polydactyly that we observed after expression of Hoxa11 in distal limbs, we propose that the evolution of Hoxa11 regulation contributed to the transition from polydactyl limbs in stem-group tetrapods to pentadactyl limbs in extant tetrapods.


Asunto(s)
Evolución Biológica , Extremidades/anatomía & histología , Proteínas de Homeodominio/metabolismo , Vertebrados/anatomía & histología , Vertebrados/genética , Aletas de Animales/anatomía & histología , Aletas de Animales/metabolismo , Animales , Elementos de Facilitación Genéticos/genética , Extinción Biológica , Femenino , Intrones/genética , Ratones , ARN sin Sentido/biosíntesis , ARN sin Sentido/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra/anatomía & histología , Pez Cebra/genética
4.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29752384

RESUMEN

During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Calcineurina/metabolismo , Articulaciones/crecimiento & desarrollo , Regeneración/fisiología , Tretinoina/farmacología , Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Osteoblastos/citología , Proteína Relacionada con la Hormona Paratiroidea/biosíntesis , Proteína Relacionada con la Hormona Paratiroidea/genética , Factor de Transcripción Sp7/biosíntesis , Factor de Transcripción Sp7/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Dev Dyn ; 249(2): 187-198, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31487071

RESUMEN

BACKGROUND: Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear. RESULTS: mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema. mmp13a knockdown via morpholino electroporation impairs regenerative outgrowth by decreasing cell proliferation, which correlates with a downregulation of fgf10a and sall4 expression in the blastema. Laminin distribution in the basement membrane is also affected in mmp13a MO-injected rays. Another impact of mmp13a knockdown is observed in the skeletal elements of the fin rays. Expression of two main components of actinotrichia, Collagen II and Actinodin 1 is highly reduced in mmp13a MO-injected rays leading to highly disorganized actinotrichia pattern. Inhibition of mmp13a strongly affects bone formation as shown by a reduction of Zns5 and sp7 expression and of bone matrix mineralization in rays. These defects are accompanied by a significant increase in apoptosis in mmp13a MO-injected fin regenerates. CONCLUSION: Defects of expression of this multifunctional proteinase drastically affects osteoblast differentiation, bone and actinotrichia formation as well as Laminin distribution in the basement membrane of the fin regenerate, suggesting the important role of Mmp13 during the regenerative process.


Asunto(s)
Osteoblastos/citología , Osteoblastos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Aletas de Animales/citología , Aletas de Animales/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Laminina/metabolismo , Proteínas de Pez Cebra/genética
6.
Development ; 140(21): 4323-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089472

RESUMEN

Sexually dimorphic breeding tubercles (BTs) are keratinized epidermal structures that form clusters on the dorsal surface of the anterior rays of zebrafish male pectoral fins. BTs appear during sexual maturation and are maintained through regular shedding and renewal of the keratinized surface. Following pectoral fin amputation, BT clusters regenerate after the initiation of revascularization, but concomitantly with a second wave of angiogenesis. This second wave of regeneration forms a web-like blood vessel network that penetrates the supportive epidermis of BTs. Upon analyzing the effects of sex steroids and their inhibitors, we show that androgens induce and estrogens inhibit BT cluster formation in intact and regenerating pectoral fins. Androgen-induced BT formation in females is accompanied by the formation of a male-like blood vessel network. Treatment of females with both androgens and an angiogenesis inhibitor results in the formation of undersized BT clusters when compared with females treated with androgens alone. Overall, the growth and regeneration of large BTs requires a hormonal stimulus and the presence of an additional blood vessel network that is naturally found in males.


Asunto(s)
Andrógenos/metabolismo , Aletas de Animales/fisiología , Neovascularización Fisiológica/fisiología , Regeneración/fisiología , Caracteres Sexuales , Pez Cebra/fisiología , Aletas de Animales/irrigación sanguínea , Aletas de Animales/metabolismo , Animales , Cartilla de ADN/genética , Células Epidérmicas , Femenino , Histocitoquímica , Queratinocitos/metabolismo , Masculino , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Nature ; 466(7303): 234-7, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20574421

RESUMEN

The early development of teleost paired fins is strikingly similar to that of tetrapod limb buds and is controlled by similar mechanisms. One early morphological divergence between pectoral fins and limbs is in the fate of the apical ectodermal ridge (AER), the distal epidermis that rims the bud. Whereas the AER of tetrapods regresses after specification of the skeletal progenitors, the AER of teleost fishes forms a fold that elongates. Formation of the fin fold is accompanied by the synthesis of two rows of rigid, unmineralized fibrils called actinotrichia, which keep the fold straight and guide the migration of mesenchymal cells within the fold. The actinotrichia are made of elastoidin, the components of which, apart from collagen, are unknown. Here we show that two zebrafish proteins, which we name actinodin 1 and 2 (And1 and And2), are essential structural components of elastoidin. The presence of actinodin sequences in several teleost fishes and in the elephant shark (Callorhinchus milii, which occupies a basal phylogenetic position), but not in tetrapods, suggests that these genes have been lost during tetrapod species evolution. Double gene knockdown of and1 and and2 in zebrafish embryos results in the absence of actinotrichia and impaired fin folds. Gene expression profiles in embryos lacking and1 and and2 function are consistent with pectoral fin truncation and may offer a potential explanation for the polydactyly observed in early tetrapod fossils. We propose that the loss of both actinodins and actinotrichia during evolution may have led to the loss of lepidotrichia and may have contributed to the fin-to-limb transition.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/fisiología , Evolución Biológica , Extremidades/fisiología , Proteínas de Peces/deficiencia , Pez Cebra/anatomía & histología , Pez Cebra/metabolismo , Estructuras Animales/embriología , Animales , Colágeno/química , Colágeno/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Extremidades/anatomía & histología , Extremidades/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Modelos Biológicos , Filogenia , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Development ; 139(6): 1188-97, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318227

RESUMEN

The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/fisiología , Regeneración , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Aletas de Animales/embriología , Animales , Desarrollo Óseo , Huesos/embriología , Simulación por Computador , Modelos Biológicos , Morfogénesis , Osteogénesis , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
9.
Am J Hum Genet ; 89(6): 713-30, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152675

RESUMEN

Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.


Asunto(s)
Enfermedades Cerebelosas/genética , Cilios/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/genética , Mutación , Anomalías Múltiples , Adulto , Animales , Síndrome de Bardet-Biedl/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Estudios de Casos y Controles , Línea Celular , Cerebelo/anomalías , Niño , Preescolar , Mapeo Cromosómico , Cilios/metabolismo , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Haplotipos , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/metabolismo , Polimorfismo de Nucleótido Simple , Retina/anomalías , Análisis de Secuencia de ADN , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra/embriología , Pez Cebra/genética
10.
Dev Biol ; 365(2): 424-33, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22445510

RESUMEN

The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.


Asunto(s)
Aletas de Animales/embriología , Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/fisiología , Regeneración , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Aletas de Animales/citología , Aletas de Animales/efectos de la radiación , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de la radiación , Células Cultivadas , Proteínas Hedgehog/antagonistas & inhibidores , Rayos Láser , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
11.
Cells ; 9(11)2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142761

RESUMEN

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Asunto(s)
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Laminopatías/metabolismo , Proteína Quinasa C-alfa/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Músculo Estriado/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación , Mioblastos/metabolismo , Ratas , Transducción de Señal
12.
Cells ; 8(4)2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934932

RESUMEN

The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms-lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.


Asunto(s)
Laminas/genética , Modelos Biológicos , Músculo Estriado/patología , Enfermedades Musculares/patología , Animales , Modelos Animales de Enfermedad , Humanos , Fenotipo
13.
PLoS One ; 14(5): e0216370, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31048899

RESUMEN

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.


Asunto(s)
Aletas de Animales/fisiología , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración/fisiología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Elementos de Facilitación Genéticos/fisiología , Exones/fisiología , Intrones/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Int J Dev Biol ; 62(11-12): 705-716, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30604840

RESUMEN

The evolution of tetrapod limbs from paired fish fins comprised major changes to the appendicular dermal and endochondral skeleton. Fish fin rays were lost, and the endochondral bone was modified and elaborated to form three distinct segments common to all tetrapod limbs: the stylopod, the zeugopod and the autopod. Identifying the molecular mechanisms that contributed to these morphological changes presents a unique insight into our own evolutionary history. This review first summarizes previously identified cis-acting regulatory elements for the 5'HoxA/D genes and actinodin1 that were tested using transgenic swap experiments between fish and tetrapods. Conserved regulatory networks provide evidence for a deep homology between distal fin structures and the autopod, while diverging regulatory strategies highlight potential molecular mechanisms that contributed to the fin-to-limb transition. Next, we summarize studies that performed functional analysis to recapitulate fish-tetrapod diverging regulatory strategies and then discuss their potential morphological consequences during limb evolution. Finally, we also discuss here some of the advantages and disadvantages of using zebrafish to study molecular and morphological changes during the fin-to-limb transition.


Asunto(s)
Aletas de Animales/fisiología , Evolución Biológica , Extremidades/fisiología , Regulación de la Expresión Génica , Genes Homeobox , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Elementos Reguladores de la Transcripción
15.
Dev Cell ; 46(3): 253-254, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086298

RESUMEN

Peripheral axons of sensory neurons innervate skin cells to form a functional sensory organ. In this issue of Developmental Cell, Rasmussen et al. (2018) demonstrate that scale formation is essential for the development and regeneration of zebrafish sensory axons and vasculature.


Asunto(s)
Axones , Pez Cebra , Animales , Regeneración Nerviosa , Células Receptoras Sensoriales , Piel , Proteínas de Pez Cebra
16.
PLoS One ; 13(2): e0192500, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420592

RESUMEN

The evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold. Fin fold mesenchyme migration defects have previously been proposed as a mechanism of fin dermal bone loss during tetrapod evolution as it has been shown they contribute directly to the fin ray osteoblast population. Using the nitroreductase/metronidazole system, we genetically ablated a subset of hoxa13a/hoxd13a-expressing fin fold mesenchyme to assess its contributions to fin development. Following the ablation of fin fold mesenchyme in larvae, the actinotrichia are unable to remain rigid and the median and pectoral fin folds collapse, resulting in a reduced fin fold size. The remaining cells following ablation are unable to migrate and show decreased actinodin1 mesenchymal reporter activity. Actinodin proteins are crucial structural component of the actinotrichia. Additionally, we show a decrease in hoxa13a, hoxd13a, fgf10a and altered shha, and ptch2 expression during larval fin development. A continuous treatment of metronidazole leads to fin ray defects at 30dpf. Fewer rays are present compared to stage-matched control larvae, and these rays are shorter and less defined. These results suggest the targeted hoxa13a/hoxd13a-expressing mesenchyme contribute to their own successful migration through their contributions to actinotrichia. Furthermore, due to their fate as fin ray osteoblasts, we propose their initial ablation, and subsequent disorganization produces truncated fin dermal bone elements during late larval stages.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , Larva/efectos de los fármacos , Mesodermo/crecimiento & desarrollo , Metronidazol/farmacología , Pez Cebra/genética
17.
Gene ; 368: 37-45, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16297574

RESUMEN

The sequence and chromosomal distribution of keratin genes of zebrafish were compared with that of other fishes and mammals to provide an insight into the evolution of this gene family in vertebrates. By comparative sequence analysis and radiation hybrid mapping, we identified 16 type I and 7 type II keratin genes in the zebrafish genome. This contrasts with mammals, where type I and type II keratin genes are similar in number. The keratin genes are scattered in the fish genome, contrasting with the two clusters of keratin genes in mammalian genomes. Compared to genes from two species of pufferfish, the zebrafish type I keratin genes underwent an expansion by independent tandem duplications. Expression profiles based on EST counts suggest that some of the tandemly duplicated type I keratin genes from zebrafish either underwent sub-functionalization or acquired new expression domains. The chromosomal arrangement of keratins 8, keratin18, and a second type II keratin, as a cluster of three genes, has remained conserved in vertebrate evolution, except for duplication of the three-gene cluster in some teleosts. This contrasts with other members of the keratin gene family, which diverged independently between fish and mammals.


Asunto(s)
Etiquetas de Secuencia Expresada , Queratinas/genética , Mamíferos/genética , Familia de Multigenes , Filogenia , Mapeo de Híbrido por Radiación , Pez Cebra/genética , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Humanos
18.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27248438

RESUMEN

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Asunto(s)
Comercio/legislación & jurisprudencia , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/transmisión , Regulación Gubernamental , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra , Animales , Canadá , Enfermedades de los Peces/virología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología
19.
Int J Dev Biol ; 48(2-3): 233-47, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15272389

RESUMEN

In the first part of this paper we review current knowledge regarding fish scales, focusing on elasmoid scales, the only type found in two model species, the zebrafish and the medaka. After reviewing the structure of scales and their evolutionary origin, we describe the formation of the squamation pattern. The regularity of this process suggests a pre-patterning of the skin before scale initiation. We then summarise the dynamics of scale development on the basis of morphological observations. In the absence of molecular data, these observations support the existence of genetic cascades involved in the control of scale development. In the second part of this paper, we illustrate the potential that scale development offers as a model to study organogenesis mediated by epithelial-mesenchymal interactions. Using the zebrafish (Danio rerio), we have combined alizarin red staining, light and transmission electron microscopy and in situ hybridisation using an anti-sense RNA probe for the sonic hedgehog (shh) gene. Scales develop late in ontogeny (30 days post-fertilisation) and close to the epidermal cover. Only cells of the basal epidermal layer express shh. Transcripts are first detected after the scale papillae have formed. Thus, shh is not involved in the mechanisms controlling squamation patterning and scale initiation. As the scales enlarge, shh expression is progressively restricted to a subset of basal epidermal cells located in the region that overlies their posterior field. This pattern of expression suggests that shh may be involved in the control of scale morphogenesis and differentiation in relationship with the formation of the epidermal fold in the posterior region.


Asunto(s)
Epidermis/crecimiento & desarrollo , Peces/crecimiento & desarrollo , Piel/crecimiento & desarrollo , Transactivadores/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Evolución Biológica , Tipificación del Cuerpo , Epidermis/metabolismo , Epidermis/ultraestructura , Proteínas Hedgehog , Modelos Biológicos , Morfogénesis , Piel/embriología , Piel/ultraestructura , Transactivadores/genética , Pez Cebra/metabolismo
20.
Int J Dev Biol ; 46(7): 949-56, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12455633

RESUMEN

We have performed a time course analysis of the expression of Sonichedgehog (shh) and patched1 (ptc1) in response to exogenous retinoic acid (RA) application to get some insight into the mechanism(s) underlying the formation of a mirror-image duplication of shh and ptc1 domains of expression in the pectoral fin buds of zebrafish. We have shown that RA exposure during the early stages of pectoral fin development first results in a rapid decrease or complete loss of shh/ptc1 expression. This is followed by reappearance of transcripts in the normal posterior domain, then by a stage-dependent and progressive expansion of the shh domain from the ZPA towards the anterior margin of the bud. Shh transcripts are induced in mesenchymal cells underlying the ventral ectoderm at the base of the bud. Once shh expression is activated in the most anterior cells, the number of shh-expressing cells increases in this region, possibly through an amplification mechanism involving signals from the apical ectodermal ridge. At this time, shh expression disappears from cells centrally located in the bud, resulting in the formation of the two distinct domains. An anterior extension of shh expression is also obtained in syu mutants with impaired shh function, suggesting that shh induction across the fin bud is independent of shh signaling. This study suggests the existence of complex mechanisms controlling the spatial and temporal expression of shh in the developing fin bud.


Asunto(s)
Extremidades/embriología , Teratógenos/farmacología , Transactivadores/genética , Tretinoina/farmacología , Pez Cebra/embriología , Animales , Regulación hacia Abajo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Transactivadores/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA