Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioessays ; 39(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28220493

RESUMEN

Novel and updated approaches of culturing cells in 3D are rapidly advancing our understanding of development, health, and disease. As tissues have been found to behave more realistically in 3D than in 2D cultures, organoid technology in combination with recent advances in the isolation and generation of stem cells, has rapidly become a promising concept in developmental and regenerative research. The development of all kinds of tissues can now be studied "in a dish," allowing more detailed observations of stem cell maintenance, morphogens, and differentiation. This review explores how organoids have revolutionized academic research over the last 4 decades, and how they may continue to do so. It also addresses remaining hurdles in 3D cell culturing, and how they may be overcome.


Asunto(s)
Técnicas de Cultivo de Órganos/métodos , Organoides/fisiología , Regeneración , Células Madre/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Humanos
2.
Nat Commun ; 14(1): 4998, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591832

RESUMEN

Optimization of CRISPR/Cas9-mediated genome engineering has resulted in base editors that hold promise for mutation repair and disease modeling. Here, we demonstrate the application of base editors for the generation of complex tumor models in human ASC-derived organoids. First we show efficacy of cytosine and adenine base editors in modeling CTNNB1 hot-spot mutations in hepatocyte organoids. Next, we use C > T base editors to insert nonsense mutations in PTEN in endometrial organoids and demonstrate tumorigenicity even in the heterozygous state. Moreover, drug sensitivity assays on organoids harboring either PTEN or PTEN and PIK3CA mutations reveal the mechanism underlying the initial stages of endometrial tumorigenesis. To further increase the scope of base editing we combine SpCas9 and SaCas9 for simultaneous C > T and A > G editing at individual target sites. Finally, we show that base editor multiplexing allow modeling of colorectal tumorigenesis in a single step by simultaneously transfecting sgRNAs targeting five cancer genes.


Asunto(s)
Células Madre Adultas , ARN Guía de Sistemas CRISPR-Cas , Adulto , Humanos , Oncogenes , Carcinogénesis/genética , Transformación Celular Neoplásica , Organoides
3.
Nat Protoc ; 16(10): 4633-4649, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34381208

RESUMEN

Adult-stem-cell-derived organoids model human epithelial tissues ex vivo, which enables the study of host-microbe interactions with great experimental control. This protocol comprises methods to coculture organoids with microbes, particularly focusing on human small intestinal and colon organoids exposed to individual bacterial species. Microinjection into the lumen and periphery of 3D organoids is discussed, as well as exposure of organoids to microbes in a 2D layer. We provide detailed protocols for characterizing the coculture with regard to bacterial and organoid cell viability and growth kinetics. Spatial relationships can be studied by fluorescence live microscopy, as well as scanning electron microscopy. Finally, we discuss considerations for assessing the impact of bacteria on gene expression and mutations through RNA and DNA sequencing. This protocol requires equipment for standard mammalian tissue culture, or bacterial or viral culture, as well as a microinjection device.


Asunto(s)
Intestinos , Organoides , Técnicas de Cocultivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA