Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991682

RESUMEN

Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, most notably epilepsy. However, EEG recordings are typically analyzed manually by highly specialized and heavily trained personnel. Moreover, the low rate of capturing abnormal events during the procedure makes interpretation time-consuming, resource-hungry, and overall an expensive process. Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data and optimizing the allocation of human resources towards precision medicine. Here, we present MindReader, a novel unsupervised machine-learning method comprised of the interplay between an autoencoder network, a hidden Markov model (HMM), and a generative component: after dividing the signal into overlapping frames and performing a fast Fourier transform, MindReader trains an autoencoder neural network for dimensionality reduction and compact representation of different frequency patterns for each frame. Next, we processed the temporal patterns using a HMM, while a third and generative component hypothesized and characterized the different phases that were then fed back to the HMM. MindReader then automatically generates labels that the physician can interpret as pathological and non-pathological phases, thus effectively reducing the search space for trained personnel. We evaluated MindReader's predictive performance on 686 recordings, encompassing more than 980 h from the publicly available Physionet database. Compared to manual annotations, MindReader identified 197 of 198 epileptic events (99.45%), and is, as such, a highly sensitive method, which is a prerequisite for clinical use.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Redes Neurales de la Computación , Análisis de Fourier , Aprendizaje Automático no Supervisado
2.
J Biol Chem ; 297(6): 101355, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717959

RESUMEN

The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.


Asunto(s)
Epilepsia/genética , Mutación Missense , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Resistencia a Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Humanos , Lactante , Simulación de Dinámica Molecular , Mutación Missense/efectos de los fármacos , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , ATPasa Intercambiadora de Sodio-Potasio/análisis , Xenopus
3.
FASEB J ; 33(9): 10193-10206, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31199885

RESUMEN

The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-γ (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtiö, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Ouabaína/farmacología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células COS , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Chlorocebus aethiops , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/enzimología , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Quinasas/efectos de los fármacos , Proteoma , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos
4.
BMC Genomics ; 20(1): 710, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31510914

RESUMEN

BACKGROUND: Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. RESULTS: We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. CONCLUSIONS: This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.


Asunto(s)
Adaptación Fisiológica/genética , Chlamydia/genética , Chlamydia/fisiología , Genómica , Interacciones Huésped-Patógeno/genética , Selección Genética , Evolución Molecular , Genoma Bacteriano/genética , Anotación de Secuencia Molecular
5.
Am J Physiol Cell Physiol ; 310(7): C491-5, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26791490

RESUMEN

The Na(+)-K(+)-ATPase (NKA) differs from most other ion transporters, not only in its capacity to maintain a steep electrochemical gradient across the plasma membrane, but also as a receptor for a family of cardiotonic steroids, to which ouabain belongs. Studies from many groups, performed during the last 15 years, have demonstrated that ouabain, a member of the cardiotonic steroid family, can activate a network of signaling molecules, and that NKA will also serve as a signal transducer that can provide a feedback loop between NKA and the mitochondria. This brief review summarizes the current knowledge and controversies with regard to the understanding of NKA signaling.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Humanos
6.
Cell Biochem Funct ; 34(5): 367-77, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27338714

RESUMEN

Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 µM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-µM and 10-µM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Cerebelo/citología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ouabaína/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Ratas , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
J Biol Chem ; 288(4): 2734-43, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23195960

RESUMEN

Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na(+) imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na(+) concentration ([Na(+)](i)) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na(+)](i), similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na(+)](i) in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na(+)](i) is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na(+). Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na(+) binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na(+)](i) were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.


Asunto(s)
Neuronas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Animales , Calibración , Catálisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrofisiología/métodos , Hipocampo/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Ouabaína/farmacología , Isoformas de Proteínas , Ratas , Ratas Sprague-Dawley , Sodio/química , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química
8.
Biochim Biophys Acta Gen Subj ; 1868(7): 130619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643888

RESUMEN

The sodium potassium pump, Na,K-ATPase (NKA), is an integral plasma membrane protein, expressed in all eukaryotic cells. It is responsible for maintaining the transmembrane Na+ gradient and is the major determinant of the membrane potential. Self-interaction and oligomerization of NKA in cell membranes has been proposed and discussed but is still an open question. Here, we have used a combination of FRET and Fluorescence Correlation Spectroscopy, FRET-FCS, to analyze NKA in the plasma membrane of living cells. Click chemistry was used to conjugate the fluorescent labels Alexa 488 and Alexa 647 to non-canonical amino acids introduced in the NKA α1 and ß1 subunits. We demonstrate that FRET-FCS can detect an order of magnitude lower concentration of green-red labeled protein pairs in a single-labeled red and green background than what is possible with cross-correlation (FCCS). We show that a significant fraction of NKA is expressed as a dimer in the plasma membrane. We also introduce a method to estimate not only the number of single and double labeled NKA, but the number of unlabeled, endogenous NKA and estimate the density of endogenous NKA at the plasma membrane to 1400 ± 800 enzymes/µm2.


Asunto(s)
Membrana Celular , Transferencia Resonante de Energía de Fluorescencia , Análisis de la Célula Individual , ATPasa Intercambiadora de Sodio-Potasio , Espectrometría de Fluorescencia , Células HEK293 , Humanos , Aminoácidos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Membrana Celular/enzimología , Análisis de la Célula Individual/métodos , Multimerización de Proteína
9.
Biochemistry ; 52(50): 9059-67, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24266852

RESUMEN

Exposure of intact cells to selective inhibitors of Na(+)/K(+)-ATPase such as ouabain activates several growth-related cell signaling pathways. It has been suggested that the initial event of these pathways is the binding of ouabain to a preexisting complex of Src with Na(+)/K(+)-ATPase of the plasma membrane. The aim of this work was to evaluate the role of Src in the ouabain-induced activation of phosphatidylinositide 3-kinase 1A (PI3K1A) and its downstream consequences. When fibroblasts devoid of Src (SYF cells) and controls (Src(++) cells) were exposed to ouabain, PI3K1A, Akt, and proliferative growth were similarly stimulated in both cell lines. Ouabain-induced activation of Akt was not prevented by the Src inhibitor PP2. In contrast, ERK1/2 were not activated by ouabain in SYF cells but were stimulated in Src(++) cells; this was prevented by PP2. In isolated adult mouse cardiac myocytes, where ouabain induces hypertrophic growth, PP2 also did not prevent ouabain-induced activation of Akt and the resulting hypertrophy. Ouabain-induced increases in the levels of co-immunoprecipitation of the α-subunit of Na(+)/K(+)-ATPase with the p85 subunit of PI3K1A were noted in SYF cells, Src(++) cells, and adult cardiac myocytes. In conjunction with previous findings, the results presented here indicate that (a) if there is a preformed complex of Src and Na(+)/K(+)-ATPase, it is irrelevant to ouabain-induced activation of the PI3K1A/Akt pathway through Na(+)/K(+)-ATPase and (b) a more likely, but not established, mechanism of linkage of Na(+)/K(+)-ATPase to PI3K1A is the ouabain-induced interaction of a proline-rich domain of the α-subunit of Na(+)/K(+)-ATPase with the SH3 domain of the p85 subunit of PI3K1A.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Ouabaína/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Ratones , Familia-src Quinasas/metabolismo
10.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248239

RESUMEN

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Asunto(s)
Metabolismo Energético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Riñón , Hombre de Neandertal
11.
Brain Sci ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562186

RESUMEN

Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.

12.
Mol Neurobiol ; 57(10): 4018-4030, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32651756

RESUMEN

The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 µM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor-dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.


Asunto(s)
Ouabaína/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Calcio/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hipocampo/citología , Modelos Biológicos , N-Metilaspartato/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Familia-src Quinasas/metabolismo
13.
Nat Genet ; 51(1): 36-41, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510240

RESUMEN

Studies in experimental systems have identified a multitude of mutational mechanisms including DNA replication infidelity and DNA damage followed by inefficient repair or replicative bypass. However, the relative contributions of these mechanisms to human germline mutation remain unknown. Here, we show that error-prone damage bypass on the lagging strand plays a major role in human mutagenesis. Transcription-coupled DNA repair removes lesions on the transcribed strand; lesions on the non-transcribed strand are preferentially converted into mutations. In human polymorphism we detect a striking similarity between mutation types predominant on the non-transcribed strand and on the strand lagging during replication. Moreover, damage-induced mutations in cancers accumulate asymmetrically with respect to the direction of replication, suggesting that DNA lesions are resolved asymmetrically. We experimentally demonstrate that replication delay greatly attenuates the mutagenic effect of ultraviolet irradiation, confirming that replication converts DNA damage into mutations. We estimate that at least 10% of human mutations arise due to DNA damage.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Mutación de Línea Germinal/genética , Neoplasias/genética , Células Cultivadas , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Mutagénesis/genética , Polimorfismo de Nucleótido Simple/genética , Transcripción Genética/genética
14.
J Bioinform Comput Biol ; 16(2): 1840011, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29739306

RESUMEN

Sequencing of complete nuclear genomes of Neanderthal and Denisovan stimulated studies about their relationship with modern humans demonstrating, in particular, that DNA alleles from both Neanderthal and Denisovan genomes are present in genomes of modern humans. The Papuan genome is a unique object because it contains both Neanderthal and Denisovan alleles. Here, we have shown that the Papuan genomes contain different gene functional groups inherited from each of the ancient people. The Papuan genomes demonstrate a relative prevalence of Neanderthal alleles in genes responsible for the regulation of transcription and neurogenesis. The enrichment of specific functional groups with Denisovan alleles is less pronounced; these groups are responsible for bone and tissue remodeling. This analysis shows that introgression of alleles from Neanderthals and Denisovans to Papuans occurred independently and retention of these alleles may carry specific adaptive advantages.


Asunto(s)
Genoma Humano , Hominidae/genética , Alelos , Animales , Población Negra/genética , Remodelación Ósea/genética , Análisis por Conglomerados , Genética de Población , Humanos , Familia de Multigenes , Hombre de Neandertal/genética , Papúa Nueva Guinea , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética
16.
CNS Neurol Disord Drug Targets ; 14(10): 1343-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26295826

RESUMEN

UNLABELLED: Ouabain stimulates activation of various signaling cascades such as protein kinase B (Akt) and Extracellular-signaling-regulated kinase 1/2 (ERK 1/2) in various cell lines. Retinoic acid (RA) is commonly used to induce neuroblastoma differentiation in cultures. Upon RA administration, human neuroblastoma cell line, SK-N-SH demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Here we report that ouabain-induced signaling is altered under the action of 1 µM RA in human neuroblastoma SK-N-SH cells. RA increased the expression of p110α subunit of phosphoinositide 3-kinase (PI3K), Akt and ß1 subunit of Na(+)/K(+)-ATPase. Ouabain activated Akt and ERK 1/2 in differentiated SK-N-SH cells; this effect was not observed in non-differentiated SK-N-SH cells. Long-term incubation of non-differentiated SK-N-SH with 1 µM ouabain led to a decrease in the number of cells; this effect was reduced in differentiated SK-N-SH cells. Taken together, these results suggest that ouabain leads to cell death in neuroblastoma cells rather than neuronal cells due to the different response to ouabain manifested by activation of Akt and ERK 1/2. HIGHLIGHTS: • RA increases the expression of p110α subunit of PI3K, Akt and ß1 subunit of Na(+)/K(+)-ATPase • Ouabain induces activation of Akt and ERK 1/2 in differentiated SK-N-SH cells but not in non-differentiated cells • 1 µM ouabain leads to a decrease in the number of cells in non-differentiated SK-N-SH • Reduction of ouabain-induced cell death in differentiated SK-N-SH.


Asunto(s)
Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Neuronas/efectos de los fármacos , Ouabaína/farmacología , Tretinoina/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Neuroblastoma/patología , Neuroblastoma/fisiopatología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/patología , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Tiempo
17.
Mol Neurobiol ; 52(3): 1726-1734, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25381029

RESUMEN

NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.


Asunto(s)
Neuronas/efectos de los fármacos , Ouabaína/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células Cultivadas , Neuronas/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos
18.
Gene ; 548(1): 81-90, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25014137

RESUMEN

Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals.


Asunto(s)
Intrones , Magnoliopsida/genética , ARN de Planta , Algoritmos , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Briófitas/genética , Biología Computacional/métodos , Secuencia Conservada , Bases de Datos Genéticas , Flores/genética , Genoma de Planta , Humanos , Ratones , Datos de Secuencia Molecular , Oryza/genética , Filogenia , Populus/genética , ARN de Planta/química , ARN de Transferencia/genética , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA