Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0149023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38294246

RESUMEN

The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.


Asunto(s)
Microbiota , Aguas Residuales , Microbiología del Suelo , Suelo/química , Filogenia , Clima Desértico , Hidrocarburos
2.
Environ Sci Technol ; 57(14): 5592-5602, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972708

RESUMEN

Drinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF. C6 precursors can be transformed through nitrification (microbial oxidation) of amine moieties into perfluorohexane sulfonate (PFHxS), a compound of regulatory concern. Here, we report biotransformation of the most abundant C6 sulfonamido precursors in 3M AFFF with available commercial standards (FHxSA, PFHxSAm, and PFHxSAmS) in microcosms representative of the groundwater/surface water boundary. Results show rapid (<1 day) biosorption to living cells by precursors but slow biotransformation into PFHxS (1-100 pM day-1). The transformation pathway includes one or two nitrification steps and is supported by the detection of key intermediates using high-resolution mass spectrometry. Increasing nitrate concentrations and total abundance of nitrifying taxa occur in parallel with precursor biotransformation. Together, these data provide multiple lines of evidence supporting microbially limited biotransformation of C6 sulfonamido precursors involving ammonia-oxidizing archaea (Nitrososphaeria) and nitrite-oxidizing bacteria (Nitrospina). Further elucidation of interrelationships between precursor biotransformation and nitrogen cycling in ecosystems would help inform site remediation efforts.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Ecosistema , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Biotransformación , Fluorocarburos/análisis , Alcanosulfonatos
3.
Proc Natl Acad Sci U S A ; 117(7): 3670-3677, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015108

RESUMEN

The number of horizontally drilled shale oil and gas wells in the United States has increased from nearly 28,000 in 2007 to nearly 127,000 in 2017, and research has suggested the potential for the development of shale resources to affect nearby stream ecosystems. However, the ability to generalize current studies is limited by the small geographic scope as well as limited breadth and integration of measured chemical and biological indicators parameters. This study tested the hypothesis that a quantifiable, significant relationship exists between the density of oil and gas (OG) development, increasing stream water concentrations of known geochemical tracers of OG extraction, and the composition of benthic macroinvertebrate and microbial communities. Twenty-five headwater streams that drain lands across a gradient of shale gas development intensity were sampled. Our strategy included comprehensive measurements across multiple seasons of sampling to account for temporal variability of geochemical parameters, including known shale OG geochemical tracers, and microbial and benthic macroinvertebrate communities. No significant relationships were found between the intensity of OG development, shale OG geochemical tracers, or benthic macroinvertebrate or microbial community composition, whereas significant seasonal differences in stream chemistry were observed. These results highlight the importance of considering spatial and temporal variability in stream chemistry and biota and not only the presence of anthropogenic activities in a watershed. This comprehensive, integrated study of geochemical and biological variability of headwater streams in watersheds undergoing OG development provides a robust framework for examining the effects of energy development at a regional scale.


Asunto(s)
Ecosistema , Yacimiento de Petróleo y Gas/química , Ríos/química , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Monitoreo del Ambiente , Invertebrados/clasificación , Invertebrados/crecimiento & desarrollo , Pennsylvania , Ríos/microbiología , Ríos/parasitología
4.
Appl Environ Microbiol ; 88(22): e0121922, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286524

RESUMEN

Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.


Asunto(s)
Bradyrhizobium , Tricloroetileno , Tricloroetileno/metabolismo , Fijación del Nitrógeno/genética , Suelo/química , Acetileno/metabolismo , Filogenia , Simbiosis , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN
5.
Arch Environ Contam Toxicol ; 83(3): 253-271, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36129489

RESUMEN

A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH4/L with an associated NH3 of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.


Asunto(s)
Compuestos de Amonio , Cyprinidae , Percas , Contaminantes Químicos del Agua , Animales , Amoníaco/análisis , Compuestos de Amonio/análisis , Cyprinidae/fisiología , Hielo/análisis , North Dakota , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Nitrógeno/análisis
6.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33008825

RESUMEN

Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.


Asunto(s)
Burkholderiales/metabolismo , Hierro/metabolismo , Ríos/microbiología , Aguas Residuales/microbiología , Alemania , Minería , Oxidación-Reducción
7.
Artículo en Inglés | MEDLINE | ID: mdl-33570486

RESUMEN

A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93T was capable of acetylenotrophic and diazotrophic growth, grew at 22-37 °C, pH 6.3-8.5 and in the presence of 10-45 g l-1 NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93T represented a member of the genus Syntrophotalea with highest 16S rRNA gene sequence similarities to Syntrophotalea acetylenica DSM 3246T (96.6 %), Syntrophotalea carbinolica DSM 2380T (96.5 %), and Syntrophotalea venetiana DSM 2394T (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93T had low genome-wide average nucleotide identity (81-87.5 %) and <70 % digital DNA-DNA hybridization value with other members of the genus Syntrophotalea. The phylogenetic position of SFB93T within the family Syntrophotaleaceae and as a novel member of the genus Syntrophotalea was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T (=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.

8.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453259

RESUMEN

The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of essential natural attenuation processes. These findings provide new insights into microbial responses following a release of UOG wastewaters and are critical for identifying strategies for the remediation and natural attenuation of impacted environments.


Asunto(s)
Desinfectantes/análisis , Glicol de Etileno/análisis , Galactanos/análisis , Fracking Hidráulico , Mananos/análisis , Microbiota/efectos de los fármacos , Gomas de Plantas/análisis , Aguas Residuales/análisis , Anaerobiosis , Biodegradación Ambiental , Sedimentos Geológicos/microbiología
9.
Archaea ; 2017: 2136287, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28694737

RESUMEN

Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I) Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea). Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.


Asunto(s)
Archaea/clasificación , Dióxido de Carbono/química , Carbonatos/química , Agua Subterránea/microbiología , Silicatos/química , ADN de Archaea/genética , Ecosistema , Filogenia , ARN Ribosómico 16S/genética
10.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28667109

RESUMEN

Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days.IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


Asunto(s)
Acetileno/metabolismo , Deltaproteobacteria/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , Deltaproteobacteria/crecimiento & desarrollo , Fermentación , Genoma Bacteriano , Hidroliasas/genética , Hidroliasas/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno , Nitrogenasa/genética , Nitrogenasa/metabolismo , Filogenia
11.
Environ Sci Technol ; 51(21): 12139-12145, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28942635

RESUMEN

In January 2014, approximately 37 800 L of crude 4-methylcyclohexanemethanol (crude MCHM) spilled into the Elk River, West Virginia. To understand the long-term fate of 4-MCHM, we conducted experiments under environmentally relevant conditions to assess the potential for the 2 primary compounds in crude MCHM (1) to undergo biodegradation and (2) for sediments to serve as a long-term source of 4-MCHM. We developed a solid phase microextraction (SPME) method to quantify the cis- and trans-isomers of 4-MCHM. Autoclaved Elk River sediment slurries sorbed 17.5% of cis-4-MCHM and 31% of trans-4-MCHM from water during the 2-week experiment. Sterilized, impacted, spill-site sediment released minor amounts of cis- and up to 35 µg/L of trans-4-MCHM into water, indicating 4-MCHM was present in sediment collected 10 months post spill. In anoxic microcosms, 300 µg/L cis- and 150 µg/L trans-4-MCHM degraded to nondetectable levels in 8-13 days in both impacted and background sediments. Under aerobic conditions, 4-MCHM isomers degraded to nondetectable levels within 4 days. Microbial communities at impacted sites differed in composition compared to background samples, but communities from both sites shifted in response to crude MCHM amendments. Our results indicate that 4-MCHM is readily biodegradable under environmentally relevant conditions.


Asunto(s)
Biodegradación Ambiental , Ciclohexanos , Contaminantes Químicos del Agua , Sedimentos Geológicos , Ríos , West Virginia
12.
Appl Environ Microbiol ; 82(10): 3009-3021, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969702

RESUMEN

UNLABELLED: The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn(4+),Mn(3+))5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems. IMPORTANCE: This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biota , Hongos/clasificación , Agua Subterránea/química , Agua Subterránea/microbiología , Manganeso/metabolismo , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/aislamiento & purificación , Hongos/metabolismo , Concentración de Iones de Hidrógeno , Oxidación-Reducción
13.
Environ Sci Technol ; 50(11): 5517-25, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27158829

RESUMEN

The development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia. In June 2014, waters collected downstream from the site had elevated specific conductance (416 µS/cm) and Na, Cl, Ba, Br, Sr, and Li concentrations, compared to upstream, background waters (conductivity, 74 µS/cm). Elevated TDS, a marker of UOG wastewater, provided an early indication of impacts in the stream. Wastewater inputs are also evident by changes in (87)Sr/(86)Sr in streamwater adjacent to the disposal facility. Sediments downstream from the facility were enriched in Ra and had high bioavailable Fe(III) concentrations relative to upstream sediments. Microbial communities in downstream sediments had lower diversity and shifts in composition. Although the hydrologic pathways were not able to be assessed, these data provide evidence demonstrating that activities at the disposal facility are impacting a nearby stream and altering the biogeochemistry of nearby ecosystems.


Asunto(s)
Compuestos Férricos , Aguas Residuales/química , Ecosistema , Ambiente , West Virginia
14.
Appl Environ Microbiol ; 81(7): 2384-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616797

RESUMEN

The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed-upper and lower-limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 10(3) to 6 × 10(6) genes liter(-1) over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.


Asunto(s)
Bacterias/clasificación , Biota , Carbonato de Calcio , Dióxido de Carbono/metabolismo , Agua Subterránea/microbiología , Compuestos de Nitrógeno/metabolismo , Compuestos de Azufre/metabolismo , Procesos Autotróficos , Bacterias/genética , Bacterias/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Appl Environ Microbiol ; 80(16): 5086-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24928873

RESUMEN

Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Compuestos de Manganeso/metabolismo , Microbiología del Suelo , Uranio/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Minería , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Suelo/química
16.
mSphere ; 9(7): e0025624, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920371

RESUMEN

Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiología , Humanos , Microbiología/tendencias , Estados Unidos , Animales , Sociedades Científicas , Microbiota
17.
Sci Total Environ ; 932: 172996, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719042

RESUMEN

Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.


Asunto(s)
Ácidos Alcanesulfónicos , Biodegradación Ambiental , Fluorocarburos , Microbiología del Suelo , Contaminantes del Suelo , Fluorocarburos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Contaminantes del Suelo/metabolismo , Anaerobiosis , Halogenación , Solventes , Suelo/química , Microbiota
18.
Anal Chem ; 85(18): 8708-14, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23972095

RESUMEN

Raman gas spectrometry is introduced as a unique tool for the investigation of the respiratory activity that is indicative for growth of bacteria involved in biomineralization. Growth of these bacteria cannot be monitored using conventional turbidity-based optical density measurements due to concomitant mineral formation in the medium. The respiratory activity of carbonate-precipitating Arthrobacter sulfonivorans , isolated from the recently discovered Herrenberg Cave, was investigated during its lifecycle by means of innovative cavity-enhanced Raman gas analysis. This method allowed rapid and nonconsumptive online quantification of CO2 and O2 in situ in the headspace of the bacterial culture. Carbon dioxide production rates of A. sulfonivorans showed two maxima due to its pleomorphic growth lifecycle. In contrast, only one maximum was observed in control organism Pseudomonas fluorescens with a one-stage lifecycle. Further insight into the biomineralization process over time was provided by a combination of Raman macro- and microspectroscopy. With the help of this spatially resolved chemical imaging of the different types of calcium carbonate minerals, it was elucidated that the surface of the A. sulfonivorans bacterial cells served as nuclei for biomineralization of initially spherical vaterite precipitates. These vaterite biominerals continued growing as chemically stable rock-forming calcite crystals with rough edges. Thus, the utilization of innovative Raman multigas spectroscopy, combined with Raman mineral analysis, provided novel insights into microbial-mediated biomineralization and, therefore, provides a powerful methodology in the field of environmental sciences.


Asunto(s)
Arthrobacter/química , Arthrobacter/metabolismo , Carbonato de Calcio/química , Cuevas , Espectrometría Raman/métodos
19.
J Eukaryot Microbiol ; 60(5): 467-79, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23808986

RESUMEN

To clarify the structure of microbial food webs in groundwater, knowledge about the protist diversity and feeding strategies is essential. We applied cultivation-dependent approaches and molecular methods for further understanding of protist diversity in groundwater. Groundwater was sampled from a karstified aquifer located in the Thuringian Basin (Thuringia, Germany). Cultivable protist abundance estimated up to 8,000 cells/L. Eleven flagellates, 10 naked amoebae, and one ciliate morpho-species were detected in groundwater enrichment cultures. Most of the flagellates morpho-species, typically < 10 µm, were sessile or free swimming suspension feeders, e.g., Spumella spp., Monosiga spp., and mobile, surface-associated forms that grasp biofilms, e.g., Bodo spp. Naked amoebae, typically < 35 µm, that grasp biofilms were represented by, e.g., Vahlkampfia spp., Vannella spp., and Hartmanella spp. The largest fraction of the 18S rRNA gene sequences was affiliated with Spumella-like Stramenopiles. Besides, also sequences affiliated with fungi and metazoan grazers were detected in clone libraries of the groundwater. We hypothesize that small sized protist species take refuge in the structured surface of the fractures and fissures of the karstified aquifer and mainly feed on biofilm-associated or suspended bacteria.


Asunto(s)
Biodiversidad , Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Agua Subterránea/parasitología , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Alemania , Microscopía , Datos de Secuencia Molecular , Carga de Parásitos , Filogenia , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
20.
Microbiol Spectr ; : e0414522, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36951557

RESUMEN

The dimethyl sulfoxide reductase (or MopB) family is a diverse assemblage of enzymes found throughout Bacteria and Archaea. Many of these enzymes are believed to have been present in the last universal common ancestor (LUCA) of all cellular lineages. However, gaps in knowledge remain about how MopB enzymes evolved and how this diversification of functions impacted global biogeochemical cycles through geologic time. In this study, we perform maximum likelihood phylogenetic analyses on manually curated comparative genomic and metagenomic data sets containing over 47,000 distinct MopB homologs. We demonstrate that these enzymes constitute a catalytically and mechanistically diverse superfamily defined not by the molybdopterin- or tungstopterin-containing [molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)] cofactor but rather by the structural fold that binds it in the protein. Our results suggest that major metabolic innovations were the result of the loss of the metal cofactor or the gain or loss of protein domains. Phylogenetic analyses also demonstrated that formate oxidation and CO2 reduction were the ancestral functions of the superfamily, traits that have been vertically inherited from the LUCA. Nearly all of the other families, which drive all other biogeochemical cycles mediated by this superfamily, originated in the bacterial domain. Thus, organisms from Bacteria have been the key drivers of catalytic and biogeochemical innovations within the superfamily. The relative ordination of MopB families and their associated catalytic activities emphasize fundamental mechanisms of evolution in this superfamily. Furthermore, it underscores the importance of prokaryotic adaptability in response to the transition from an anoxic to an oxidized atmosphere. IMPORTANCE The MopB superfamily constitutes a repertoire of metalloenzymes that are central to enduring mysteries in microbiology, from the origin of life and how microorganisms and biogeochemical cycles have coevolved over deep time to how anaerobic life adapted to increasing concentrations of O2 during the transition from an anoxic to an oxic world. Our work emphasizes that phylogenetic analyses can reveal how domain gain or loss events, the acquisition of novel partner subunits, and the loss of metal cofactors can stimulate novel radiations of enzymes that dramatically increase the catalytic versatility of superfamilies. We also contend that the superfamily concept in protein evolution can uncover surprising kinships between enzymes that have remarkably different catalytic and physiological functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA