Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026697

RESUMEN

Entropy-engineered materials are garnering considerable attention owing to their excellent mechanical and transport properties, such as their high thermoelectric performance. However, understanding the effect of entropy on thermoelectrics remains a challenge. In this study, we used the PbGeSnCdxTe3+x family as a model system to systematically investigate the impact of entropy engineering on its crystal structure, microstructure evolution, and transport behavior. We observed that PbGeSnTe3 crystallizes in a rhombohedral structure at room temperature with complex domain structures and transforms into a high-temperature cubic structure at ∼373 K. By alloying CdTe with PbGeSnTe3, the increased configurational entropy lowers the phase-transition temperature and stabilizes PbGeSnCdxTe3+x in the cubic structure at room temperature, and the domain structures vanish accordingly. The high-entropy effect results in increased atomic disorder and consequently a low lattice thermal conductivity of 0.76 W m-1 K-1 in the material owing to enhanced phonon scattering. Notably, the increased crystal symmetry is conducive to band convergence, which results in a high-power factor of 22.4 µW cm-1 K-1. As a collective consequence of these factors, a maximum ZT of 1.63 at 875 K and an average ZT of 1.02 in the temperature range of 300-875 K were obtained for PbGeSnCd0.08Te3.08. This study highlights that the high-entropy effect can induce a complex microstructure and band structure evolution in materials, which offers a new route for the search for high-performance thermoelectrics in entropy-engineered materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA