Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063133

RESUMEN

Omics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography-mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Proteínas Portadoras , Progresión de la Enfermedad , Proteínas de Microfilamentos , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Femenino , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Metaboloma , Metabolómica/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica
2.
Dev Biol ; 492: 25-36, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152869

RESUMEN

Fascin expression has commonly been observed in certain subtypes of breast cancer, where its expression is associated with poor clinical outcome. However, its role in normal mammary gland development has not been elucidated. Here, we used a fascin knockout mouse model to assess its role in normal mammary gland morphogenesis and lactation. Fascin knockout was not embryonically lethal, and its effect on the litter size or condition at birth was minimal. However, litter survival until the weaning stage significantly depended on fascin expression solely in the nursing dams. Accordingly, pups that nursed from fascin-/- dams had smaller milk spots in their abdomen, suggesting a lactation defect in the nursing dams. Mammary gland whole-mounts of pregnant and lactating fascin-/- mice showed significantly reduced side branching and alveologenesis. Despite a typical composition of basal, luminal, and stromal subsets of mammary cells and normal ductal architecture of myoepithelial and luminal layers, the percentage of alveolar progenitors (ALDH+) in fascin-/- epithelial fraction was significantly reduced. Further in-depth analyses of fascin-/- mammary glands showed a significant reduction in the expression of Elf5, the master regulator of alveologenesis, and a decrease in the activity of its downstream target p-STAT5. In agreement, there was a significant reduction in the expression of the milk proteins, whey acidic protein (WAP), and ß-casein in fascin-/- mammary glands. Collectively, our data demonstrate, for the first time, the physiological role of fascin in normal mammary gland lactogenesis, an addition that could reveal its contribution to breast cancer initiation and progression.


Asunto(s)
Glándulas Mamarias Animales , Neoplasias , Embarazo , Femenino , Ratones , Animales , Glándulas Mamarias Animales/metabolismo , Lactancia/fisiología , Ratones Noqueados , Neoplasias/metabolismo
3.
Int J Cancer ; 145(3): 830-841, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30719702

RESUMEN

Breast cancer remains the second cause of tumor-related mortality in women worldwide mainly due to chemoresistance and metastasis. The chemoresistance and metastasis are attributed to a rare subpopulation with enriched stem-like characteristics, thus called Cancer Stem Cells (CSCs). We have previously reported aberrant expression of the actin-bundling protein (fascin) in breast cancer cells, which enhances their chemoresistance, metastasis and enriches CSC population. The intracellular mechanisms that link fascin with its downstream effectors are not fully elucidated. Here, loss and gain of function approaches in two different breast cancer models were used to understand how fascin promotes disease progression. Importantly, findings were aligned with expression data from actual breast cancer patients. Expression profiling of a large breast cancer dataset (TCGA, 530 patients) showed statistically significant correlation between fascin expression and a key adherence molecule, ß1 integrin (ITGB1). In vitro manipulation of fascin expression in breast cancer cells exhibited its direct effect on ITGB1 expression. Fascin-mediated regulation of ITGB1 was critical for several breast cancer cell functions including adhesion to different extracellular matrix, self-renewability and chemoresistance. Importantly, there was a significant relationship between fascin and ITGB1 co-expression and short disease-free as well as overall survival in chemo-treated breast cancer patients. This novel role of fascin effect on ITGB1 expression and its outcome on cell self-renewability and chemoresistance strongly encourages for dual targeting of fascin-ITGB1 axis as a therapeutic approach to halt breast cancer progression and eradicate it from the root.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Portadoras/biosíntesis , Integrina beta1/biosíntesis , Proteínas de Microfilamentos/biosíntesis , Células Madre Neoplásicas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba
4.
Stem Cells ; 34(12): 2799-2813, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27502039

RESUMEN

An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44hi /CD24lo and ALDH+ ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/metabolismo , Autorrenovación de las Células , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/patología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Antígenos CD/metabolismo , Neoplasias de la Mama/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Autorrenovación de las Células/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones Desnudos , Proteínas de Microfilamentos/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayo de Tumor de Célula Madre
5.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959629

RESUMEN

Recent years have witnessed major progress in development of novel therapeutic agents such as chemotherapy, targeted therapy and immune checkpoint inhibitors for breast cancer. However, cancer-related death remains high especially in triple-negative breast cancer (TNBC) due limited therapeutic options. Development of targeted therapies for TNBC requires better understanding of biology and signaling networks that promote disease progression. Fascin, an actin bundling protein, was identified as a key regulator of many signaling pathways that contribute to breast cancer progression. Herein, fascin ShRNA was used to generate stable fascin knockdown (FSCN1KD) in the MDA-MB-231 TNBC cell line and then were subjected to comprehensive mRNA and miRNA transcriptome analysis. We identified 129 upregulated and 114 downregulated mRNA transcripts, while 14 miRNAs were differentially expressed in FSCN1KD. Ingenuity pathway analysis (IPA) was used to predict the impact of differentially expressed transcripts on signaling pathways and functional categories and to construct miRNA-mRNA regulatory networks in the context of FSCN1 knockdown. Compared to FSCN1KD, fascin-positive (FSCN1CON) breast cancer cells showed enrichment in genes promoting cellular proliferation, migration, survival, DNA replication and repair. Expression of FSCN1high (identified in BRCA dataset from TCGA) in conjunction with elevated expression of the top 10 upregulated or decreased expression of the top 10 downregulated genes (identified in our FSCN1CON vs. FSCN1KD) correlates with worst survival outcome. Taken together, these data confirmed fascin's role in promoting TNBC progression, and identified a novel opportunity for therapeutic interventions via targeting those FSCN1-related transcripts.

6.
Front Oncol ; 10: 440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373510

RESUMEN

Cancer stem cells (CSCs), a rare population of tumor cells with high self-renewability potential, have gained increasing attention due to their contribution to chemoresistance and metastasis. We have previously demonstrated a critical role for the actin-bundling protein (fascin) in mediating breast cancer chemoresistance through activation of focal adhesion kinase (FAK). The latter is known to trigger the ß-catenin signaling pathway. Whether fascin activation of FAK would ultimately trigger ß-catenin signaling pathway has not been elucidated. Here, we assessed the effect of fascin manipulation in breast cancer cells on triggering ß-catenin downstream targets and its dependence on FAK. Gain and loss of fascin expression showed its direct effect on the constitutive expression of ß-catenin downstream targets and enhancement of self-renewability. In addition, fascin was essential for glycogen synthase kinase 3ß inhibitor-mediated inducible expression and function of the ß-catenin downstream targets. Importantly, fascin-mediated constitutive and inducible expression of ß-catenin downstream targets, as well as its subsequent effect on CSC function, was at least partially FAK dependent. To assess the clinical relevance of the in vitro findings, we evaluated the consequence of fascin, FAK, and ß-catenin downstream target coexpression on the outcome of breast cancer patient survival. Patients with coexpression of fascinhigh and FAKhigh or high ß-catenin downstream targets showed the worst survival outcome, whereas in fascinlow, patient coexpression of FAKhigh or high ß-catenin targets had less significant effect on the survival. Altogether, our data demonstrated the critical role of fascin-mediated ß-catenin activation and its dependence on intact FAK signaling to promote breast CSC function. These findings suggest that targeting of fascin-FAK-ß-catenin axis may provide a novel therapeutic approach for eradication of breast cancer from the root.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA