Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063024

RESUMEN

Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.


Asunto(s)
Analgésicos Opioides , Haptenos , Inmunoterapia , Trastornos Relacionados con Opioides , Haptenos/inmunología , Humanos , Animales , Inmunoterapia/métodos , Trastornos Relacionados con Opioides/inmunología , Analgésicos Opioides/uso terapéutico , Vacunas/inmunología , Radioinmunoensayo
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175678

RESUMEN

Despite the large arsenal of analgesic medications, neuropathic pain (NP) management is not solved yet. Angiotensin II receptor type 1 (AT1) has been identified as a potential target in NP therapy. Here, we investigate the antiallodynic effect of AT1 blockers telmisartan and losartan, and particularly their combination with morphine on rat mononeuropathic pain following acute or chronic oral administration. The impact of telmisartan on morphine analgesic tolerance was also assessed using the rat tail-flick assay. Morphine potency and efficacy in spinal cord samples of treated neuropathic animals were assessed by [35S]GTPγS-binding assay. Finally, the glutamate content of the cerebrospinal fluid (CSF) was measured by capillary electrophoresis. Oral telmisartan or losartan in higher doses showed an acute antiallodynic effect. In the chronic treatment study, the combination of subanalgesic doses of telmisartan and morphine ameliorated allodynia and resulted in a leftward shift in the dose-response curve of morphine in the [35S]GTPγS binding assay and increased CSF glutamate content. Telmisartan delayed morphine analgesic-tolerance development. Our study has identified a promising combination therapy composed of telmisartan and morphine for NP and opioid tolerance. Since telmisartan is an inhibitor of AT1 and activator of PPAR-γ, future studies are needed to analyze the effect of each component.


Asunto(s)
Analgésicos Opioides , Neuralgia , Ratas , Animales , Analgésicos Opioides/uso terapéutico , Telmisartán/farmacología , Telmisartán/uso terapéutico , Losartán/uso terapéutico , Guanosina 5'-O-(3-Tiotrifosfato) , Tolerancia a Medicamentos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Morfina/farmacología , Morfina/uso terapéutico , Neuralgia/tratamiento farmacológico , Glutamatos/uso terapéutico
3.
Molecules ; 28(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375318

RESUMEN

Opioids are considered the most effective analgesics for the treatment of moderate to severe acute and chronic pain. However, the inadequate benefit/risk ratio of currently available opioids, together with the current 'opioid crisis', warrant consideration on new opioid analgesic discovery strategies. Targeting peripheral opioid receptors as effective means of treating pain and avoiding the centrally mediated side effects represents a research area of substantial and continuous attention. Among clinically used analgesics, opioids from the class of morphinans (i.e., morphine and structurally related analogues) are of utmost clinical importance as analgesic drugs activating the mu-opioid receptor. In this review, we focus on peripheralization strategies applied to N-methylmorphinans to limit their ability to cross the blood-brain barrier, thus minimizing central exposure and the associated undesired side effects. Chemical modifications to the morphinan scaffold to increase hydrophilicity of known and new opioids, and nanocarrier-based approaches to selectively deliver opioids, such as morphine, to the peripheral tissue are discussed. The preclinical and clinical research activities have allowed for the characterization of a variety of compounds that show low central nervous system penetration, and therefore an improved side effect profile, yet maintaining the desired opioid-related antinociceptive activity. Such peripheral opioid analgesics may represent alternatives to presently available drugs for an efficient and safer pain therapy.


Asunto(s)
Analgésicos Opioides , Morfinanos , Humanos , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/química , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Morfina/farmacología , Morfina/uso terapéutico , Receptores Opioides mu
4.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067494

RESUMEN

Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.


Asunto(s)
Antagonistas de Narcóticos , Estreñimiento Inducido por Opioides , Humanos , Antagonistas de Narcóticos/uso terapéutico , Analgésicos Opioides/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Estreñimiento Inducido por Opioides/tratamiento farmacológico , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Receptores Opioides/metabolismo
5.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375382

RESUMEN

In this work, we report on the in vitro and in vivo pharmacological properties of LP1 analogs to complete the series of structural modifications aimed to generate compounds with improved analgesia. To do that, the phenyl ring in the N-substituent of our lead compound LP1 was replaced by an electron-rich or electron-deficient ring and linked through a propanamide or butyramide spacer at the basic nitrogen of the (-)-cis-N-normetazocine skeleton. In radioligand binding assays, compounds 3 and 7 were found to display nanomolar binding affinity for the µ opioid receptor (MOR) (Ki = 5.96 ± 0.08 nM and 1.49 ± 0.24 nM, respectively). In the mouse vas deferens (MVD) assay, compound 3 showed an antagonist effect against DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin), a highly selective MOR prototype agonist, whereas compound 7 produced naloxone reversible effect at MOR. Moreover, compound 7, as potent as LP1 and DAMGO at MOR, was able to reduce thermal and inflammatory pain assessed by the mouse tail-flick test and rat paw pressure thresholds (PPTs) measured by a Randall-Selitto test.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Masculino , Ratas , Ratones , Animales , Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5) , Ligandos , Receptores Opioides mu/metabolismo , Ciclazocina , Dolor/tratamiento farmacológico
6.
Angew Chem Int Ed Engl ; 62(35): e202303700, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37332089

RESUMEN

Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Mitragyna/química , Mitragyna/metabolismo , Alcaloides de Triptamina Secologanina/química , Analgésicos Opioides
7.
Neurochem Res ; 47(11): 3272-3284, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35945308

RESUMEN

Phenylephrine (PE) is a canonical α1-adrenoceptor-selective agonist. However, unexpected effects of PE have been observed in preclinical and clinical studies, that cannot be easily explained by its actions on α1-adrenoceptors. The probability of the involvement of α2- and ß-adrenoceptors in the effect of PE has been raised. In addition, our earlier study observed that PE released noradrenaline (NA) in a [Ca2+]o-independent manner. To elucidate this issue, we have investigated the effects of PE on [3H]NA release and α1-mediated smooth muscle contractions in the mouse vas deferens (MVD) as ex vivo preparation. The release experiments were designed to assess the effects of PE at the presynaptic terminal, whereas smooth muscle isometric contractions in response to electrical field stimulation were used to measure PE effect postsynaptically. Our results show that PE at concentrations between 0.3 and 30 µM significantly enhanced the resting release of [3H]NA in a [Ca2+]o-independent manner. In addition, prazosin did not affect the release of NA evoked by PE. On the contrary, PE-evoked smooth muscle contractions were inhibited by prazosin administration indicating the α1-adrenoceptor-mediated effect. When the function of the NA transporter (NAT) was attenuated with nisoxetine, PE failed to release NA and the contractions were reduced by approximately 88%. The remaining part proved to be prazosin-sensitive. The present work supports the substantial indirect effect of PE which relays on the cytoplasmic release of NA, which might explain the reported side effects for PE.


Asunto(s)
Antagonistas Adrenérgicos alfa , Norepinefrina , Agonistas alfa-Adrenérgicos/farmacología , Antagonistas Adrenérgicos alfa/farmacología , Animales , Citoplasma , Masculino , Ratones , Norepinefrina/farmacología , Fenilefrina/farmacología , Prazosina/farmacología , Receptores Adrenérgicos alfa 1
8.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076962

RESUMEN

Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.


Asunto(s)
Neuralgia , Tolperisona , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ácido Glutámico , Neuralgia/tratamiento farmacológico , Pregabalina/farmacología , Pregabalina/uso terapéutico , Ratas , Tolperisona/farmacología , Tolperisona/uso terapéutico
9.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804568

RESUMEN

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Glicina/líquido cefalorraquídeo , Hiperalgesia/prevención & control , Neuralgia/tratamiento farmacológico , Sarcosina/análogos & derivados , Animales , Hiperalgesia/metabolismo , Hiperalgesia/patología , Masculino , Actividad Motora , Neuralgia/metabolismo , Neuralgia/patología , Ratas , Ratas Wistar , Sarcosina/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología
10.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684749

RESUMEN

The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Receptores de Angiotensina/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Humanos , Neuralgia/tratamiento farmacológico , Nocicepción/efectos de los fármacos , Manejo del Dolor/métodos , Proto-Oncogenes Mas , Receptores de Angiotensina/metabolismo , Receptores Opioides/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo
11.
Molecules ; 25(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466522

RESUMEN

There is growing evidence on the role of peripheral µ-opioid receptors (MORs) in analgesia and analgesic tolerance. Opioid analgesics are the mainstay in the management of moderate to severe pain, and their efficacy in the alleviation of pain is well recognized. Unfortunately, chronic treatment with opioid analgesics induces central analgesic tolerance, thus limiting their clinical usefulness. Numerous molecular mechanisms, including receptor desensitization, G-protein decoupling, ß-arrestin recruitment, and alterations in the expression of peripheral MORs and microbiota have been postulated to contribute to the development of opioid analgesic tolerance. However, these studies are largely focused on central opioid analgesia and tolerance. Accumulated literature supports that peripheral MORs mediate analgesia, but controversial results on the development of peripheral opioid receptors-mediated analgesic tolerance are reported. In this review, we offer evidence on the consequence of the activation of peripheral MORs in analgesia and analgesic tolerance, as well as approaches that enhance analgesic efficacy and decrease the development of tolerance to opioids at the peripheral sites. We have also addressed the advantages and drawbacks of the activation of peripheral MORs on the sensory neurons and gut (leading to dysbiosis) on the development of central and peripheral analgesic tolerance.


Asunto(s)
Analgesia , Receptores Opioides mu/metabolismo , Analgésicos Opioides/uso terapéutico , Animales , Humanos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Manejo del Dolor/métodos
12.
Molecules ; 25(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192229

RESUMEN

The present work represents the in vitro (potency, affinity, efficacy) and in vivo (antinociception, constipation) opioid pharmacology of the novel compound 14-methoxycodeine-6-O-sulfate (14-OMeC6SU), compared to the reference compounds codeine-6-O-sulfate (C6SU), codeine and morphine. Based on in vitro tests (mouse and rat vas deferens, receptor binding and [35S]GTPγS activation assays), 14-OMeC6SU has µ-opioid receptor-mediated activity, displaying higher affinity, potency and efficacy than the parent compounds. In rats, 14-OMeC6SU showed stronger antinociceptive effect in the tail-flick assay than codeine and was equipotent to morphine, whereas C6SU was less efficacious after subcutaneous (s.c.) administration. Following intracerebroventricular injection, 14-OMeC6SU was more potent than morphine. In the Complete Freund's Adjuvant-induced inflammatory hyperalgesia, 14-OMeC6SU and C6SU in s.c. doses up to 6.1 and 13.2 µmol/kg, respectively, showed peripheral antihyperalgesic effect, because co-administered naloxone methiodide, a peripherally acting opioid receptor antagonist antagonized the measured antihyperalgesia. In addition, s.c. C6SU showed less pronounced inhibitory effect on the gastrointestinal transit than 14-OMeC6SU, codeine and morphine. This study provides first evidence that 14-OMeC6SU is more effective than codeine or C6SU in vitro and in vivo. Furthermore, despite C6SU peripheral antihyperalgesic effects with less gastrointestinal side effects the superiority of 14-OMeC6SU was obvious throughout the present study.


Asunto(s)
Analgésicos Opioides/síntesis química , Analgésicos Opioides/farmacología , Codeína/síntesis química , Codeína/farmacología , Analgésicos Opioides/química , Analgésicos Opioides/uso terapéutico , Animales , Unión Competitiva , Codeína/química , Codeína/uso terapéutico , Adyuvante de Freund , Tránsito Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inyecciones Intraventriculares , Masculino , Ratones , Naloxona/farmacología , Naloxona/uso terapéutico , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Ratas Wistar , Receptores Opioides mu/metabolismo
13.
Neurochem Res ; 43(6): 1250-1257, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725918

RESUMEN

Opioid analgesics devoid of central side effects are unmet medical need in the treatment of acute pain (e.g. post-operative pain). Recently, we have reported on 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), a novel opioid agonist of high efficacy producing peripheral antinociception in subchronic inflammatory pain in certain doses. The present study focused on the antinociceptive effect of 14-O-MeM6SU compared to morphine in formalin test of an early/acute (Phase I) and late/tonic (Phase II) pain phases. Subcutaneous 14-O-MeM6SU (253-1012 nmol/kg) and morphine (3884-31075 nmol/kg) dose dependently reduced the pain behaviors of both phases. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid antagonist, abolished the antinociceptive effect of 506 nmol/kg 14-O-MeM6SU. On the other hand, the effects of 14-O-MeM6SU (1012 nmol/kg) and morphine (15538 nmol/kg) were only partially affected by NAL-M, indicating the contribution of CNS to antinociception. Locally injected test compounds into formalin treated paws caused antinociception in both phases. Locally effective doses of test compounds were also injected into contralateral paws. Morphine showed effects in both phases, 14-O-MeM6SU in certain doses failed to produce antinociception in either phase. A NAL-M reversible systemic dose of 14-O-MeM6SU and the lowest systemic effective dose of morphine were evaluated for their sedative effects following isoflurane-induced sleeping (righting reflex). In contrast to morphine, 14-O-MeM6SU in certain antinociceptive doses showed no impact on sleeping time. These data highlight that high efficacy opioids of limited CNS penetration in certain doses mitigate somatic and inflammatory pain by targeting MOR at the periphery.


Asunto(s)
Dolor Agudo/tratamiento farmacológico , Analgésicos Opioides/administración & dosificación , Analgésicos/administración & dosificación , Codeína/análogos & derivados , Dimensión del Dolor/efectos de los fármacos , Dolor Agudo/metabolismo , Dolor Agudo/psicología , Analgésicos/química , Analgésicos Opioides/química , Animales , Codeína/administración & dosificación , Codeína/química , Relación Dosis-Respuesta a Droga , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Subcutáneas , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Wistar
14.
Inflammopharmacology ; 25(1): 107-118, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27873165

RESUMEN

Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I1-IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I1-IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha2-adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I1-IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I1-IR agonists), AGN 192403 (highly selective I1-IR ligand, putative antagonist), efaroxan (I1-IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.


Asunto(s)
Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Receptores de Imidazolina/metabolismo , Imidazolinas/metabolismo , Imidazolinas/uso terapéutico , Animales , Colitis/inducido químicamente , Femenino , Ligandos , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
15.
Am J Physiol Heart Circ Physiol ; 311(4): H927-H943, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521417

RESUMEN

Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Estado Prediabético/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo , Animales , Apoptosis , Autofagia , Composición Corporal , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas , Diástole , Dieta Alta en Grasa , Ecocardiografía , GTP Fosfohidrolasas , Proteínas de Choque Térmico/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/metabolismo , Mitofagia , Miocardio/metabolismo , Miocardio/ultraestructura , Fosforilación , Estado Prediabético/fisiopatología , Ratas , Ratas Long-Evans , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sarcolema , Serina-Treonina Quinasas TOR/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Presión Ventricular
16.
J Pharmacol Exp Ther ; 358(3): 483-91, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27418171

RESUMEN

It has been hypothesized that α2-adrenoceptors (α2-ARs) may be involved in the pathomechanism of colitis; however, the results are conflicting because both aggravation and amelioration of colonic inflammation have been described in response to α2-AR agonists. Therefore, we aimed to analyze the role of α2-ARs in acute murine colitis. The experiments were carried out in wild-type, α2A-, α2B-, and α2C-AR knockout (KO) C57BL/6 mice. Colitis was induced by dextran sulfate sodium (DSS, 2%); alpha2-AR ligands were injected i.p. The severity of colitis was determined both macroscopically and histologically. Colonic myeloperoxidase (MPO) and cytokine levels were measured by enzyme-linked immunosorbent assay and proteome profiler array, respectively. The nonselective α2-AR agonist clonidine induced a modest aggravation of DSS-induced colitis. It accelerated the disease development and markedly enhanced the weight loss of animals, but did not influence the colon shortening, tissue MPO levels, or histologic score. Clonidine induced similar changes in α2B- and α2C-AR KO mice, whereas it failed to affect the disease activity index scores and caused only minor weight loss in α2A-AR KO animals. In contrast, selective inhibition of α2A-ARs by BRL 44408 significantly delayed the development of colitis; reduced the colonic levels of MPO and chemokine (C-C motif) ligand 3, chemokine (C-X-C motif) ligand 2 (CXCL2), CXCL13, and granulocyte-colony stimulating factor; and elevated that of tissue inhibitor of metalloproteinases-1. In this work, we report that activation of α2-ARs aggravates murine colitis, an effect mediated by the α2A-AR subtype, and selective inhibition of these receptors reduces the severity of gut inflammation.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran/farmacología , Intestinos/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Clonidina/farmacología , Clonidina/uso terapéutico , Colitis/metabolismo , Colitis/fisiopatología , Ingestión de Líquidos/efectos de los fármacos , Femenino , Técnicas de Inactivación de Genes , Imidazoles/farmacología , Imidazoles/uso terapéutico , Mucosa Intestinal/metabolismo , Intestinos/patología , Isoindoles/farmacología , Isoindoles/uso terapéutico , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos alfa 2/deficiencia , Receptores Adrenérgicos alfa 2/genética
17.
J Pharmacol Exp Ther ; 359(1): 171-81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27435180

RESUMEN

Growing data support peripheral opioid antinociceptive effects, particularly in inflammatory pain models. Here, we examined the antinociceptive effects of subcutaneously administered, recently synthesized 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU) compared with morphine-6-O-sulfate (M6SU) in a rat model of inflammatory pain induced by an injection of complete Freund's adjuvant and in a mouse model of visceral pain evoked by acetic acid. Subcutaneous doses of 14-O-MeM6SU and M6SU up to 126 and 547 nmol/kg, respectively, produced significant and subcutaneous or intraplantar naloxone methiodide (NAL-M)-reversible antinociception in inflamed paws compared with noninflamed paws. Neither of these doses significantly affected thiobutabarbital-induced sleeping time or rat pulmonary parameters. However, the antinociceptive effects of higher doses were only partially reversed by NAL-M, indicating contribution of the central nervous system. In the mouse writhing test, 14-O-MeM6SU was more potent than M6SU after subcutaneous or intracerebroventricular injections. Both displayed high subcutaneous/intracerebroventricular ED50 ratios. The antinociceptive effects of subcutaneous 14-O-MeM6SU and M6SU up to 136 and 3043 nmol/kg, respectively, were fully antagonized by subcutaneous NAL-M. In addition, the test compounds inhibited mouse gastrointestinal transit in antinociceptive doses. Taken together, these findings suggest that systemic administration of the novel compound 14-O-MeM6SU similar to M6SU in specific dose ranges shows peripheral antinociception in rat and mouse inflammatory pain models without central adverse effects. These findings apply to male animals and must be confirmed in female animals. Therefore, titration of systemic doses of opioid compounds with limited access to the brain might offer peripheral antinociception of clinical importance.


Asunto(s)
Analgésicos/administración & dosificación , Analgésicos/farmacología , Morfina/administración & dosificación , Morfina/farmacología , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Masculino , Ratones , Morfina/química , Morfina/uso terapéutico , Dolor/tratamiento farmacológico , Ratas , Ratas Wistar , Respiración/efectos de los fármacos , Tiopental/análogos & derivados , Tiopental/farmacología
18.
Purinergic Signal ; 12(1): 1-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26542977

RESUMEN

Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.


Asunto(s)
Neuroglía , Neuronas , Receptores de Glutamato/fisiología , Receptores Purinérgicos/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología
19.
Dig Dis Sci ; 61(6): 1512-23, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26860509

RESUMEN

BACKGROUND: Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility. METHODS: Gastric injury was induced by acidified ethanol in Wistar rats. Mucosal catalase and superoxide dismutase levels were measured by assay kits. The effect of allyphenyline on electrical field stimulation (EFS)-induced fundic and colonic contractions was determined in C57BL/6 mice. RESULTS: Intracerebroventricularly injected allyphenyline (3 and 15 nmol/rat) dose dependently inhibited the development of mucosal damage, which was antagonized by ARC 239 (α2B/C-AR and 5HT1A receptor antagonist), (S)-WAY 100135 (selective 5HT1A receptor antagonist), and JP-1302 (selective α2C-AR antagonist). This protection was accompanied by significant elevation of mucosal catalase and superoxide dismutase levels. Allyphenyline (10(-9)-10(-5) M) also inhibited EFS-induced fundic contractions, which was antagonized by ARC 239 and (S)-WAY 100135, but not by JP-1302. Similar inhibition was observed in the colon; however, in this case only ARC 239 reduced this effect, while neither selective inhibition of α2C-ARs and 5HT1A receptors nor genetic deletion of α2A- and α2B-ARs influenced it. CONCLUSIONS: Activation of both central α2C-ARs and 5HT1A receptors contributes to the gastroprotective action of allyphenyline in rats. Its inhibitory effect on fundic contractions is mediated by 5HT1A receptors, but neither α2-ARs nor 5HT1A receptors take part in its inhibitory effect on colonic contractility in mice.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Compuestos Alílicos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Imidazolinas/farmacología , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Compuestos Alílicos/química , Animales , Colon/efectos de los fármacos , Colon/fisiología , Imidazolinas/química , Masculino , Estructura Molecular , Ratas , Ratas Wistar
20.
Biomedicines ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38398023

RESUMEN

The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers ß-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA