Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 179(6): 927-935, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919572

RESUMEN

BACKGROUND: Clinical exome sequencing (CES) is rapidly becoming the diagnostic test of choice in patients with suspected Mendelian diseases especially those that are heterogeneous in etiology and clinical presentation. Reporting large CES series can inform guidelines on best practices for test utilization, and improves accuracy of variant interpretation through clinically-oriented data sharing. METHODS: This is a retrospective series of 509 probands from Qatar who underwent singleton or trio CES either as a reflex or naïve (first-tier) test from April 2014 to December 2016 for various clinical indications. RESULTS: The CES diagnostic yield for the overall cohort was 48.3% (n = 246). Dual molecular diagnoses were observed in 2.1% of cases; nearly all of whom (91%) were consanguineous. We report compelling variants in 11 genes with no established Mendelian phenotypes. Unlike reflex-WES, naïve WES was associated with a significantly shorter diagnostic time (3 months vs. 18 months, p < 0.0001). CONCLUSION: Middle Eastern patients tend to have a higher yield from CES than outbred populations, which has important implications in test choice especially early in the diagnostic process. The relatively high diagnostic rate is likely related to the predominance of recessive diagnoses (60%) since consanguinity and positive family history were strong predictors of a positive CES.


Asunto(s)
Secuenciación del Exoma , Familia , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Alelos , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Patología Molecular , Fenotipo , Qatar/epidemiología , Qatar/etnología , Adulto Joven
2.
Hum Genome Var ; 3: 16016, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27408750

RESUMEN

Reaching the full potential of precision medicine depends on the quality of personalized genome interpretation. In order to facilitate precision medicine in regions of the Middle East and North Africa (MENA), a population-specific genome for the indigenous Arab population of Qatar (QTRG) was constructed by incorporating allele frequency data from sequencing of 1,161 Qataris, representing 0.4% of the population. A total of 20.9 million single nucleotide polymorphisms (SNPs) and 3.1 million indels were observed in Qatar, including an average of 1.79% novel variants per individual genome. Replacement of the GRCh37 standard reference with QTRG in a best practices genome analysis workflow resulted in an average of 7* deeper coverage depth (an improvement of 23%) and 756,671 fewer variants on average, a reduction of 16% that is attributed to common Qatari alleles being present in QTRG. The benefit for using QTRG varies across ancestries, a factor that should be taken into consideration when selecting an appropriate reference for analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA