Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919694

RESUMEN

Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Nanopartículas Multifuncionales/uso terapéutico , Animales , Membrana Celular/química , Humanos , Nanotecnología
2.
Front Med (Lausanne) ; 11: 1425691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309679

RESUMEN

Endometriosis is a chronic, estrogen-dependent, proinflammatory disease that can cause various dysfunctions. The main clinical manifestations of endometriosis include chronic pelvic pain and impaired fertility. The disease is characterized by a spectrum of dysfunctions spanning hormonal signaling, inflammation, immune dysregulation, angiogenesis, neurogenic inflammation, epigenetic alterations, and tissue remodeling. Dysregulated hormonal signaling, particularly involving estrogen and progesterone, drives abnormal growth and survival of endometrial-like tissue outside the uterus. Chronic inflammation, marked by immune cell infiltration and inflammatory mediator secretion, perpetuates tissue damage and pain. Altered immune function, impaired ectopic tissue clearance, and dysregulated cytokine production contribute to immune dysregulation. Enhanced angiogenesis promotes lesion growth and survival. Epigenetic modifications influence gene expression patterns, e.g., HSD11B1 gene, affecting disease pathogenesis. Endometriosis related changes and infertility lead to depression in diagnosed women. Depression changes lifestyle and induces physiological and immunological changes. A higher rate of depression and anxiety has been reported in women diagnosed with endometriosis, unleashing physiological, clinical and immune imbalances which further accelerate chronic endometriosis or vice versa. Thus, both endometriosis and depression are concomitantly part of a vicious cycle that enhance disease complications. A multidimensional treatment strategy is needed which can cater for both endometrial disease and depression and anxiety disorders.

3.
Front Immunol ; 14: 1162213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063901

RESUMEN

Background: Selective cancer cell recognition is the most challenging objective in the targeted delivery of anti-cancer agents. Extruded specific cancer cell membrane coated nanoparticles, exploiting the potential of homotypic binding along with certain protein-receptor interactions, have recently proven to be the method of choice for targeted delivery of anti-cancer drugs. Prediction of the selective targeting efficiency of the cancer cell membrane encapsulated nanoparticles (CCMEN) is the most critical aspect in selecting this strategy as a method of delivery. Materials and methods: A probabilistic model based on binding scores and differential expression levels of Glioblastoma cancer cells (GCC) membrane proteins (factors and receptors) was implemented on python 3.9.1. Conditional binding efficiency (CBE) was derived for each combination of protein involved in the interactions. Selective propensities and Odds ratios in favour of cancer cells interactions were determined for all the possible combination of surface proteins for 'k' degree of interaction. The model was experimentally validated by two types of Test cultures. Results: Several Glioblastoma cell surface antigens were identified from literature and databases. Those were screened based on the relevance, availability of expression levels and crystal structure in public databases. High priority eleven surface antigens were selected for probabilistic modelling. A new term, Break-even point (BEP) was defined as a characteristic of the typical cancer cell membrane encapsulated delivery agents. The model predictions lie within ±7% of the experimentally observed values for both experimental test culture types. Conclusion: The implemented probabilistic model efficiently predicted the directional preference of the exposed nanoparticle coated with cancer cell membrane (in this case GCC membrane). This model, however, is developed and validated for glioblastoma, can be easily tailored for any type of cancer involving CCMEN as delivery agents for potential cancer immunotherapy. This probabilistic model would help in the development of future cancer immunotherapeutic with greater specificity.


Asunto(s)
Antineoplásicos , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Membrana Celular/metabolismo , Antineoplásicos/uso terapéutico , Membranas/metabolismo , Nanopartículas/química
4.
Infect Drug Resist ; 14: 2843-2849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326652

RESUMEN

OBJECTIVE: The aim of this study was to retrospectively characterize E. coli and K. pneumoniae isolates obtained from neonates during a suspected NICU outbreak of infection in Ha'il, Saudi Arabia during a period of one month (April 2014). METHODS: Antibiotic susceptibility patterns, molecular characterization for antibiotic-resistant genes (blaTEM, blaSHV, and blaCTX-M), and genotyping by PFGE and MLST were performed. RESULTS: A total of 24 E. coli and 48 K. pneumoniae isolates were cultured from neonates that had been admitted to the NICU. Among E. coli, the majority of isolates (19/24) were ESBL-positive and all of these nineteen (100%) harbored the CTX-M-15 gene. A total of 15% (3/19) were co-producers of CTX-M-15 and SHV-12, and 68.4% (13/19) were co-producers of CTX-M-15 and TEM-1. Among K. pneumoniae isolates, 87.5% (42/48) were ESBL positive with 92.85% (39/42) of these isolates containing the CTX-M-15 gene. A total of 97% (38/39) of K. pneumoniae were co-producers of CTX-M-15 and SHV-12, and 88% (37/42) were positive for TEM-1. Furthermore, 85.7% (36/42) K. pneumoniae were co-producers of CTX-M-15 and TEM-1. The majority of E. coli isolates (18/19 isolates) were grouped into two genetic clusters by pulsed field gel electrophoresis (PFGE) and all the isolates were found to be ST-131 type. In contrast, K. pneumoniae (31/42) isolates belonged to a single genotypic lineage, and all (100%) isolates belonged to the ST-14 type. CONCLUSION: This is the first report of CTX-M-15-positive, ESBL E. coli, and K. pneumoniae isolates recovered from an outbreak in an NICU in Ha'il, Saudi Arabia. It is alarming to note the high rate of outbreak isolates with simultaneous production of CTX-M-15 and SHV-12 conferring high-level resistance to oxyimino-cephalosporins.

5.
Plants (Basel) ; 9(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114026

RESUMEN

The chemical profile of Teucrium polium L. (T. polium) methanolic extract was tested using liquid chromatography coupled with high resolution mass spectrometry (HR-LCMS). Disc diffusion and microdilution assays were used for the antimicrobial activities. Coxsackievirus B-3 (CVB3) and Herpes simplex virus type 2 (HSV-2) were used for the antiviral activities. Chromobacterium violaceum (ATCC 12472 and CV026) and Pseudomonas aeruginosa PAO1 were used as starter strains for the anti-quorum sensing tests. Isoprenoids are the main class of compounds identified, and 13R-hydroxy-9E,11Z-octadecadienoic acid, valtratum, rhoifolin, sericetin diacetate, and dihydrosamidin were the dominant phytoconstituents. The highest mean diameter of growth inhibition zone was recorded for Acinetobacter baumannii (19.33 ± 1.15 mm). The minimal inhibitory concentrations were ranging from 6.25 to 25 mg/mL for bacterial strains, and from 6.25 to 25 mg/mL for Candida species. The 50% cytotoxic concentration on VERO (African Green Monkey Kidney) cell lines was estimated at 209 µg/mL. No antiviral activity was recorded. Additionally, T. polium extract was able to inhibit P. aeruginosa PAO1 motility in a concentration-dependent manner. However, the tested extract was able to inhibit 23.66% of the swarming and 35.25% of swimming capacities of PAO1 at 100 µg/mL. These results highlighted the role of germander as a potent antimicrobial agent that can interfere with the virulence factors controlled by the quorum-sensing systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA