Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 28(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37894695

RESUMEN

KP46 (tris(hydroxyquinolinato)gallium(III)) is an experimental, orally administered anticancer drug. Its absorption, delivery to tumours, and mode of action are poorly understood. We aimed to gain insight into these issues using gallium-67 and gallium-68 as radiotracers with SPECT and PET imaging in mice. [67Ga]KP46 and [68Ga]KP46, compared with [68Ga]gallium acetate, were used for logP measurements, in vitro cell uptake studies in A375 melanoma cells, and in vivo imaging in mice bearing A375 tumour xenografts up to 48 h after intravenous (tracer level) and oral (tracer and bulk) administration. 68Ga was more efficiently accumulated in A375 cells in vitro when presented as [68Ga]KP46 than as [68Ga]gallium acetate, but the reverse was observed when intravenously administered in vivo. After oral administration of [68/67Ga]KP46, absorption of 68Ga and 67Ga from the GI tract and delivery to tumours were poor, with the majority excreted in faeces. By 48 h, low but measurable amounts were accumulated in tumours. The distribution in tissues of absorbed radiogallium and octanol extraction of tissues suggested trafficking as free gallium rather than as KP46. We conclude that KP46 likely acts as a slow releaser of gallium ions which are inefficiently absorbed from the GI tract and trafficked to tissues, including tumour and bone.


Asunto(s)
Antineoplásicos , Galio , Neoplasias , Compuestos Organometálicos , Humanos , Animales , Ratones , Radioisótopos de Galio/uso terapéutico , Galio/farmacología , Compuestos Organometálicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Acetatos/uso terapéutico
2.
Bioconjug Chem ; 33(3): 473-485, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35224973

RESUMEN

Exosomes or small extracellular vesicles (sEVs) are increasingly gaining attention for their potential as drug delivery systems and biomarkers of disease. Therefore, it is important to understand their in vivo biodistribution using imaging techniques that allow tracking over time and at the whole-body level. Positron emission tomography (PET) allows short- and long-term whole-body tracking of radiolabeled compounds in both animals and humans and with excellent quantification properties compared to other nuclear imaging techniques. In this report, we explored the use of [89Zr]Zr(oxinate)4 (a cell and liposome radiotracer) for direct and intraluminal radiolabeling of several types of sEVs, achieving high radiolabeling yields. The radiosynthesis and radiolabeling protocols were optimized for sEV labeling, avoiding sEV damage, as demonstrated using several characterizations (cryoEM, nanoparticle tracking analysis, dot blot, and flow cytometry) and in vitro techniques. Using pancreatic cancer sEVs (PANC1) in a healthy mouse model, we showed that it is possible to track 89Zr-labeled sEVs in vivo using PET imaging for at least up to 24 h. We also report differential biodistribution of intact sEVs compared to intentionally heat-damaged sEVs, with significantly reduced spleen uptake for the latter. Therefore, we conclude that 89Zr-labeled sEVs using this method can reliably be used for in vivo PET tracking and thus allow efficient exploration of their potential as drug delivery systems.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Ratones , Neoplasias Pancreáticas/metabolismo , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Circonio
3.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098299

RESUMEN

Pretargeting is widely explored in immunoPET as a strategy to reduce radiation exposure of non-target organs and allow the use of short-lived radionuclides that would not otherwise be compatible with the slow pharmacokinetic profiles of antibodies. Here we investigate a pretargeting strategy based on gallium-68 and the chelator THPMe as a high-affinity pair capable of combining in vivo. After confirming the ability of THPMe to bind 68Ga in vivo at low concentrations, the bifunctional THPMe-NCS was conjugated to a humanised huA33 antibody targeting the A33 glycoprotein. Imaging experiments performed in nude mice bearing A33-positive SW1222 colorectal cancer xenografts compared pretargeting (100 µg of THPMe-NCS-huA33, followed after 24 h by 8-10 MBq of 68Ga3+) with both a directly labelled radioimmunoconjugate (89Zr-DFO-NCS-huA33, 88 µg, 7 MBq) and a 68Ga-only negative control (8-10 MBq of 68Ga3+). Imaging was performed 25 h after antibody administration (1 h after 68Ga3+ administration for negative control). No difference between pretargeting and the negative control was observed, suggesting that pretargeting via metal chelation is not feasible using this model. However, significant accumulation of "unchelated" 68Ga3+ in the tumour was found (12.9 %ID/g) even without prior administration of THPMe-NCS-huA33, though tumour-to-background contrast was impaired by residual activity in the blood. Therefore, the 68Ga-only experiment was repeated using THPMe (20 µg, 1 h after 68Ga3+ administration) to clear circulating 68Ga3+, producing a three-fold improvement of the tumour-to-blood activity concentration ratio. Although preliminary, these results highlight the potential of THPMe as a 68Ga clearing agent in imaging applications with gallium citrate.


Asunto(s)
Anticuerpos/metabolismo , Quelantes/farmacocinética , Inmunoconjugados/farmacocinética , Radiofármacos/farmacocinética , Animales , Anticuerpos/química , Línea Celular Tumoral , Quelantes/química , Femenino , Radioisótopos de Galio/química , Radioisótopos de Galio/metabolismo , Radioisótopos de Galio/farmacocinética , Xenoinjertos , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Tasa de Depuración Metabólica , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/metabolismo , Distribución Tisular
4.
RSC Chem Biol ; 3(5): 495-518, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656481

RESUMEN

Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.

5.
Mol Cancer Ther ; 21(4): 667-676, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086953

RESUMEN

Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Línea Celular Tumoral , Proliferación Celular , Humanos , Inhibidores mTOR , Masculino , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico , Serina-Treonina Quinasas TOR/metabolismo
6.
Chem Commun (Camb) ; 57(40): 4962-4965, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33876157

RESUMEN

Nitrogen-13 is an attractive but under-used PET radionuclide for labelling molecules of biological and pharmaceutical interest, complementing other PET radionuclides. Its short half-life (t1/2 = 9.97 min) imposes synthetic challenges, but we have expanded the hitherto limited pool of 13N labelling strategies and tracers by adapting the multicomponent Hantzsch condensation reaction to prepare a library of 13N-labelled 1,4-dihydropyridines from [13N]ammonia, including the widely-used drug nifedipine. This represents a key advance in 13N PET radiochemistry, and will serve to underpin the renewed interest in clinical opportunities offered by short-lived PET tracers.

7.
Dalton Trans ; 50(44): 16156-16165, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34704995

RESUMEN

Radiotracers labelled with technetium-99m (99mTc) enable accessible diagnostic imaging of disease, provided that radiotracer preparation is simple. Whilst 99mTc radiopharmaceuticals for imaging perfusion are routinely prepared from kits, and regularly used in healthcare, there are no 99mTc-labelled receptor-targeted radiopharmaceuticals in widespread clinical use. This is in part due to the multistep radiosyntheses required for the latter. We demonstrate that the diphosphine, 2,3-bis(diphenylphosphino)maleic anhydride (BMA), is an excellent platform for preparation of kit-based, receptor-targeted 99mTc-labelled radiotracers: its conjugates are simple to prepare and can be easily labelled with 99mTc using one-step, kit-based protocols. Here, reaction of BMA with the αvß3-integrin receptor targeted cyclic peptide, Arg-Gly-Asp-DPhe-Lys (RGD), provided the first diphosphine-peptide conjugate, DP-RGD. DP-RGD was incorporated into a "kit", and addition of a saline solution containing 99mTcO4- to this kit, followed by heating, furnished the radiotracer [99mTcO2(DP-RGD)2]+ in consistently high radiochemical yields (>90%). The analogous [ReO2(DP-RGD)2]+ compound was prepared and characterised, revealing that both [99mTcO2(DP-RGD)2]+ and [ReO2(DP-RGD)2]+ consist of a mixture of cis and trans geometric isomers. Finally, [99mTcO2(DP-RGD)2]+ exhibited high metabolic stability, and selectively targeted αvß3-integrin receptors, enabling in vivo SPECT imaging of αvß3-integrin receptor expression in mice.


Asunto(s)
Quelantes , Péptidos Cíclicos , Fosfinas , Radiofármacos , Tecnecio , Animales , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/metabolismo , Quelantes/administración & dosificación , Quelantes/química , Quelantes/farmacocinética , Femenino , Humanos , Integrina alfaVbeta3/química , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Fosfinas/administración & dosificación , Fosfinas/química , Fosfinas/farmacocinética , Radiofármacos/administración & dosificación , Radiofármacos/química , Radiofármacos/farmacocinética , Tecnecio/administración & dosificación , Tecnecio/química , Tecnecio/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único
8.
Metallomics ; 12(10): 1508-1520, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32959856

RESUMEN

Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 µM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.


Asunto(s)
Cobre/metabolismo , Cisteína/metabolismo , Neoplasias de la Próstata/metabolismo , Transporte Biológico , Línea Celular Tumoral , Radioisótopos de Cobre/metabolismo , Humanos , Masculino , Células PC-3 , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA