Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626679

RESUMEN

Chloroviruses exist in aquatic systems around the planet and they infect certain eukaryotic green algae that are mutualistic endosymbionts in a variety of protists and metazoans. Natural chlorovirus populations are seasonally dynamic, but the precise temporal changes in these populations and the mechanisms that underlie them have heretofore been unclear. We recently reported the novel concept that predator/prey-mediated virus activation regulates chlorovirus population dynamics, and in the current study, we demonstrate virus-packaged chemotactic modulation of prey behavior.IMPORTANCE Viruses have not previously been reported to act as chemotactic/chemoattractive agents. Rather, viruses as extracellular entities are generally viewed as non-metabolically active spore-like agents that await further infection events upon collision with appropriate host cells. That a virus might actively contribute to its fate via chemotaxis and change the behavior of an organism independent of infection is unprecedented.


Asunto(s)
Virus ADN/genética , Interacciones Microbiota-Huesped/genética , Phycodnaviridae/genética , Dinámica Poblacional
2.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34522049

RESUMEN

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Asunto(s)
Genoma Viral , Fenotipo , Virus/clasificación , Virus/genética , Genotipo , Humanos , Virión/genética , Replicación Viral/genética
3.
Microorganisms ; 9(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683491

RESUMEN

Chloroviruses are large viruses that replicate in chlorella-like green algae and normally exist as mutualistic endosymbionts (referred to as zoochlorellae) in protists such as Paramecium bursaria. Chlorovirus populations rise and fall in indigenous waters through time; however, the factors involved in these virus fluctuations are still under investigation. Chloroviruses attach to the surface of P. bursaria but cannot infect their zoochlorellae hosts because the viruses cannot reach the zoochlorellae as long as they are in the symbiotic phase. Predators of P. bursaria, such as copepods and didinia, can bring chloroviruses into contact with zoochlorellae by disrupting the paramecia, which results in an increase in virus titers in microcosm experiments. Here, we report that another predator of P. bursaria, Bursaria truncatella, can also increase chlorovirus titers. After two days of foraging on P. bursaria, B. truncatella increased infectious chlorovirus abundance about 20 times above the controls. Shorter term foraging (3 h) resulted in a small increase of chlorovirus titers over the controls and more foraging generated more chloroviruses. Considering that B. truncatella does not release viable zoochlorellae either during foraging or through fecal pellets, where zoochlorellae could be infected by chlorovirus, we suggest a third pathway of predator virus catalysis. By engulfing the entire protist and digesting it slowly, virus replication can occur within the predator and some of the virus is passed out through a waste vacuole. These results provide additional support for the hypothesis that predators of P. bursaria are important drivers of chlorovirus population sizes and dynamics.

5.
J Toxicol ; 2015: 739746, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26604922

RESUMEN

The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) is considered to be an "excitotoxin," and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups.

6.
Toxins (Basel) ; 6(2): 488-508, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24476710

RESUMEN

Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins ß-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.


Asunto(s)
Aminoácidos Diaminos/análisis , Aminobutiratos/análisis , Toxinas Bacterianas/análisis , Tropanos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Toxinas de Cianobacterias , Monitoreo del Ambiente , Peces , Lagos , Nebraska , Tracheophyta/química , Abastecimiento de Agua
7.
Toxicon ; 76: 316-25, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140919

RESUMEN

Blue-green algae, also known as cyanobacteria, can produce several different groups of toxins in the environment including hepatotoxins (microcystins), neurotoxic non-protein amino acids ß-methylamino-l-alanine (BMAA), and 2,4-diaminobutyric (DABA), as well as the bicyclic amine alkaloid anatoxin-a. Few studies have addressed the methods necessary for an accurate determination of cyanotoxins in environmental samples, and none have been published that can detect these cyanotoxins together in a single sample. Cyanotoxins occur in a wide range of environmental samples including water, fish, and aquatic plant samples. Using polymeric cation exchange solid phase extraction (SPE) coupled with liquid chromatography and fluorescence detection (HPLC/FD), and liquid chromatography ion trap tandem mass spectrometry (LC/MS/MS), these compounds can for the first time be simultaneously quantified in a variety of environmental sample types. The extraction method for biological samples can distinguish bound and free cyanotoxins. Detection limits for water ranged from 5 to 7 µg/L using HPLC/FD, while detection limits for and LC/MS were in the range of 0.8-3.2 µg/L.


Asunto(s)
Aminoácidos Diaminos/análisis , Aminobutiratos/análisis , Cianobacterias/química , Monitoreo del Ambiente/métodos , Tropanos/análisis , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Toxinas de Cianobacterias , Agua Dulce/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA