Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Biol Evol ; 38(4): 1460-1471, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33226085

RESUMEN

Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father's germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent-offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.


Asunto(s)
Variaciones en el Número de Copia de ADN , Macaca mulatta/genética , Mutación , Animales , Femenino , Duplicación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Selección Genética , Eliminación de Secuencia , Secuenciación Completa del Genoma
2.
Am J Primatol ; 83(6): e23255, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792947

RESUMEN

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results while finding additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.


Asunto(s)
COVID-19/veterinaria , Lemur , Lorisidae , Enfermedades de los Primates/epidemiología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/epidemiología , Lemur/genética , Lorisidae/genética , Enfermedades de los Primates/virología , Factores de Riesgo
3.
Immunogenetics ; 69(5): 325-339, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28343239

RESUMEN

Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Macaca fascicularis/genética , Receptores KIR/genética , Animales , Frecuencia de los Genes , Macaca fascicularis/inmunología , Análisis de Secuencia de ADN/métodos
4.
Gene ; 852: 147062, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36423778

RESUMEN

Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia of ovarian theca cell origin. We report significant association of androgen production with 15 single nucleotide variants (SNVs) identified by exome sequencing of theca cells from women with PCOS and normal ovulatory women. Ten SNVs are located within a 150 kbp region on 12q13.2 which encompasses loci identified in PCOS genome-wide association studies (GWAS) and contains PCOS candidate genes ERBB3 and RAB5B. The region also contains PA2G4 which encodes a transcriptional corepressor of androgen receptor and androgen receptor-regulated genes. PA2G4 has not previously been recognized as related to PCOS in published GWAS studies. Two of the SNVs are predicted to have functional consequences (ERBB3 missense SNV, PA2G4 promoter SNV). PA2G4 interacts with the ERBB3 cytoplasmic domain containing the missense variant, suggesting a potential signaling pathway disruption that could lead to the PCOS ovarian phenotype. Single cell RNA sequencing of theca cells showed significantly less expression of PA2G4 after forskolin treatment in PCOS cells compared to normal cells (padj = 3.82E-30) and in cells heterozygous for the PA2G4 promoter SNV compared to those without the SNV (padj = 2.16E-11). This is consistent with a functional effect of the PA2G4 promoter SNV. No individual SNV was significantly associated with PCOS in an independent family cohort, but a haplotype with minor alleles of three SNVs was found preferentially in women with PCOS. These findings suggest a functional role for 12q13.2 variants in PCOS and implicate variants in ERBB3 and PA2G4 in the pathophysiology of PCOS.


Asunto(s)
Hiperandrogenismo , Síndrome del Ovario Poliquístico , Proteínas de Unión al ARN , Receptor ErbB-3 , Proteínas de Unión al GTP rab5 , Femenino , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas/metabolismo , Estudio de Asociación del Genoma Completo , Hiperandrogenismo/genética , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Receptor ErbB-3/genética , Receptores Androgénicos/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al GTP rab5/genética
5.
Nat Commun ; 5: 3889, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24846660

RESUMEN

The intestinal microbiome is a unique ecosystem and an essential mediator of metabolism and obesity in mammals. However, studies investigating the impact of the diet on the establishment of the gut microbiome early in life are generally lacking, and most notably so in primate models. Here we report that a high-fat maternal or postnatal diet, but not obesity per se, structures the offspring's intestinal microbiome in Macaca fuscata (Japanese macaque). The resultant microbial dysbiosis is only partially corrected by a low-fat, control diet after weaning. Unexpectedly, early exposure to a high-fat diet diminished the abundance of non-pathogenic Campylobacter in the juvenile gut, suggesting a potential role for dietary fat in shaping commensal microbial communities in primates. Our data challenge the concept of an obesity-causing gut microbiome and rather provide evidence for a contribution of the maternal diet in establishing the microbiota, which in turn affects intestinal maintenance of metabolic health.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Disbiosis/etiología , Intestinos/microbiología , Microbiota , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Dieta con Restricción de Grasas , Disbiosis/microbiología , Femenino , Macaca , Embarazo , Efectos Tardíos de la Exposición Prenatal/microbiología , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA