Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 8(3): e1002537, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396657

RESUMEN

Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinson's disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.


Asunto(s)
Transporte Axonal , Proteínas de Drosophila/genética , Drosophila , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rho/genética , Animales , Autofagia/genética , Transporte Axonal/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ionóforos de Protónes/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
2.
J Biol Chem ; 288(2): 1250-65, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23105095

RESUMEN

Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.


Asunto(s)
Proteínas Portadoras/metabolismo , Hígado/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , Cartilla de ADN , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA