RESUMEN
Grafting based on both autogenous and allogenous human bone is widely used to replace areas of critical loss to induce bone regeneration. Allogenous bones have the advantage of unlimited availability from tissue banks. However, their integration into the remaining bone is limited because they lack osteoinduction and osteogenic properties. Here, we propose to induce the demineralization of the allografts to improve these properties by exposing the organic components. Allografts fragments were demineralized in 10% EDTA at pH 7.2 solution. The influence of the EDTA-DAB and MAB fragments was evaluated with respect to the adhesion, growth and differentiation of MC3'T3-E1 osteoblasts, primary osteoblasts and dental pulp stem cells (DPSC). Histomorphological analyses showed that EDTA-demineralized fragments (EDTA-DAB) maintained a bone architecture and porosity similar to those of the mineralized (MAB) samples. BMP4, osteopontin, and collagen III were also preserved. All the cell types adhered, grew and colonized both the MAB and EDTA-DAB biomaterials after 7, 14 and 21 days. However, the osteoblastic cell lines showed higher viability indexes when they were cultivated on the EDTA-DAB fragments, while the MAB fragments induced higher DPSC viability. The improved osteoinductive potential of the EDTA-DAB bone was confirmed by alkaline phosphatase activity and calcium deposition analyses. This work provides guidance for the choice of the most appropriate allograft to be used in tissue bioengineering and for the transport of specific cell lineages to the surgical site.
Asunto(s)
Aloinjertos/efectos de los fármacos , Técnica de Desmineralización de Huesos , Huesos/fisiología , Calcificación Fisiológica , Pulpa Dental/citología , Ácido Edético/farmacología , Osteoblastos/citología , Células Madre/citología , Animales , Materiales Biocompatibles/farmacología , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Minerales , Osteoblastos/efectos de los fármacos , Preservación Biológica , Ratas Wistar , Espectrometría por Rayos X , Células Madre/efectos de los fármacosRESUMEN
Blocks of Bovine bone have shown promising results as implantable scaffolds to promote bone regeneration. Strontium ranelate (SrR) is both an antiresorptive and an anabolic drug that has been indicated for oral administration to treat osteoporosis. Few studies, however, have investigated the local effects of SrR and its use in association with biomaterials thus far. In this work, we investigated SrR effects in cultures of primary osteoblasts (PO, from Wistar rats calvaria) and immortalized osteoblasts (IO, from MC3T3-E1 cell line) cultivated as a monolayer or in association with scaffolds of bovine bone in mineralized (MBB) and demineralized (DBB) forms. The optimum dose to induce SrR effects on cell viability was established as 0.1 mM. Our results suggested that the local administration of SrR is biocompatible and non-cytotoxic. In addition, SrR appeared to accelerate primary osteoblast cell differentiation by enhancing alkaline phosphatase activity, the expression of osteogenic differentiation markers, the synthesis of the organic matrix, and a decrease of Ca2+ ions in mineralized nodules. DBB was found to be a better scaffold material to promote PO and IO cell proliferation. Exposing the proteins of the demineralized bone matrix might improve scaffold osteoconductive properties. Our results indicated the importance of further investigation of the administration of SrR at sites of bone repair. The association of SrR and bone grafts suggests the possibility of using SrR as a co-adjuvant for bone tissue bioengineering and in bone regeneration therapies.
Asunto(s)
Hueso Esponjoso/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Tiofenos/farmacología , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Calcificación Fisiológica/efectos de los fármacos , Calcio/metabolismo , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colágeno/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Iones , Ratones , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Ratas WistarRESUMEN
[This corrects the article DOI: 10.3389/fnut.2023.1297926.].
RESUMEN
Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 µm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.
RESUMEN
ABSTRACT: Dental pulp stem cells (DPSC) have been showing a considerable potential for regenerative medicine. Pulps were collected from lower incisors (n=2) through direct access of the tooth pulp chamber. The isolated cells were cultured in alfa-MEM 10% FBS, in standard culture conditions. At the third passage, DPSC were characterized by flow cytometry (MHCI, CD54, CD73, CD90, CD45, CD11 and CD34); RT-PCR for Nanog gene; and their differentiation capacity in osteogenic, adipogenic and chondrogenic cell lines. Isolated cells exhibited adhesion capacity to plastic; fusiform morphology, and 80% confluence reached in approximately 3 days. These cells have also revealed positive expression for CD54, CD73 and CD90 markers; and negative expression for CD11, CD34 and CD45. Nanog expression was detected by RT-PCR, expected for a mesenchymal stem cell profile. DPSC chondrogenic differentiation was confirmed by positive staining in Alcian Blue; lipidic droplets stained with oil red confirmed their capacity to differentiate in adipogenic fate; while mineralized beads, stained with alizarin red, confirmed their differentiation in osteogenic phenotype. These results indicate the viability of the isolation and expansion of rat DPSC following this method, and osteogenic differentiation potential opens new perspectives for in vivo studies and the use of these cells in cellular therapies and tissue bioengineering, aiming bone repair.