Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 39, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557832

RESUMEN

BACKGROUND: Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS: We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS: Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Asunto(s)
Proteínas Bacterianas , Glioxilatos/metabolismo , Ingeniería Metabólica , Fosfoenolpiruvato Carboxiquinasa (ATP) , Ácido Succínico/metabolismo , Synechocystis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Synechocystis/genética , Synechocystis/metabolismo
2.
Metab Eng Commun ; 12: e00161, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33520653

RESUMEN

Cyanobacteria are one of the most promising microorganisms to produce biofuels and renewable chemicals due to their oxygenic autotrophic growth properties. However, to rely on photosynthesis, which is one of the main reasons for slow growth, low carbon assimlation rate and low production, is a bottleneck. To address this challenge, optimizing the Calvin-Benson-Bassham (CBB) cycle is one of the strategies since it is the main carbon fixation pathway. In a previous study, we showed that overexpression of either aldolase (FBA), transketolase (TK), or fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), enzymes responsible for RuBP regeneration and vital for controlling the CBB carbon flux, led to higher production rates and titers in ethanol producing strains of Synechocystis PCC 6803. In the present study, we investigated the combined effects of the above enzymes on ethanol production in Synechocystis PCC 6803. The ethanol production of the strains overexpressing two CBB enzymes (FBA â€‹+ â€‹TK, FBP/SBPase â€‹+ â€‹FBA or FBP/SBPase â€‹+ â€‹TK) was higher than the respective control strains, overexpressing either FBA or TK. The co-overexpression of FBA and TK led to more than 9 times higher ethanol production compared to the overexpression of FBA. Compared to TK the respective increase is 4 times more ethanol production. Overexpression of FBP/SBPase in combination with FBA showed 2.5 times higher ethanol production compared to FBA. Finally, co-overexpression of FBP/SBPase and TK reached about twice the production of ethanol compared to overexpression of only TK. This study clearly demonstrates that overexpression of two selected CBB enzymes leads to significantly increased ethanol production compared to overexpression of a single CBB enzyme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA