Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772604

RESUMEN

Ankle injuries caused by the Anterior Talofibular Ligament (ATFL) are the most common type of injury. Thus, finding new ways to analyze these injuries through novel technologies is critical for assisting medical diagnosis and, as a result, reducing the subjectivity of this process. As a result, the purpose of this study is to compare the ability of specialists to diagnose lateral tibial tuberosity advancement (LTTA) injury using computer vision analysis on magnetic resonance imaging (MRI). The experiments were carried out on a database obtained from the Vue PACS-Carestream software, which contained 132 images of ATFL and normal (healthy) ankles. Because there were only a few images, image augmentation techniques was used to increase the number of images in the database. Following that, various feature extraction algorithms (GLCM, LBP, and HU invariant moments) and classifiers such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF) were used. Based on the results from this analysis, for cases that lack clear morphologies, the method delivers a hit rate of 85.03% with an increase of 22% over the human expert-based analysis.


Asunto(s)
Traumatismos del Tobillo , Ligamentos Laterales del Tobillo , Humanos , Tobillo/diagnóstico por imagen , Articulación del Tobillo , Ligamentos Laterales del Tobillo/diagnóstico por imagen , Ligamentos Laterales del Tobillo/lesiones , Imagen por Resonancia Magnética/métodos , Traumatismos del Tobillo/diagnóstico por imagen , Computadores
2.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433415

RESUMEN

Breast cancer is the type of cancer with the highest incidence and global mortality of female cancers. Thus, the adaptation of modern technologies that assist in medical diagnosis in order to accelerate, automate and reduce the subjectivity of this process are of paramount importance for an efficient treatment. Therefore, this work aims to propose a robust platform to compare and evaluate the proposed strategies for improving breast ultrasound images and compare them with state-of-the-art techniques by classifying them as benign, malignant and normal. Investigations were performed on a dataset containing a total of 780 images of tumor-affected persons, divided into benign, malignant and normal. A data augmentation technique was used to scale up the corpus of images available in the chosen dataset. For this, novel image enhancement techniques were used and the Multilayer Perceptrons, k-Nearest Neighbor and Support Vector Machines algorithms were used for classification. From the promising outcomes of the conducted experiments, it was observed that the bilateral algorithm together with the SVM classifier achieved the best result for the classification of breast cancer, with an overall accuracy of 96.69% and an accuracy for the detection of malignant nodules of 95.11%. Therefore, it was found that the application of image enhancement methods can help in the detection of breast cancer at a much earlier stage with better accuracy in detection.


Asunto(s)
Mamografía , Paraganglioma , Femenino , Humanos , Aumento de la Imagen , Ultrasonografía Mamaria , Algoritmos , Registros
3.
Appl Soft Comput ; 123: 108966, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35582662

RESUMEN

The COVID-19 pandemic continues to wreak havoc on the world's population's health and well-being. Successful screening of infected patients is a critical step in the fight against it, with radiology examination using chest radiography being one of the most important screening methods. For the definitive diagnosis of COVID-19 disease, reverse-transcriptase polymerase chain reaction remains the gold standard. Currently available lab tests may not be able to detect all infected individuals; new screening methods are required. We propose a Multi-Input Transfer Learning COVID-Net fuzzy convolutional neural network to detect COVID-19 instances from torso X-ray, motivated by the latter and the open-source efforts in this research area. Furthermore, we use an explainability method to investigate several Convolutional Networks COVID-Net forecasts in an effort to not only gain deeper insights into critical factors associated with COVID-19 instances, but also to aid clinicians in improving screening. We show that using transfer learning and pre-trained models, we can detect it with a high degree of accuracy. Using X-ray images, we chose four neural networks to predict its probability. Finally, in order to achieve better results, we considered various methods to verify the techniques proposed here. As a result, we were able to create a model with an AUC of 1.0 and accuracy, precision, and recall of 0.97. The model was quantized for use in Internet of Things devices and maintained a 0.95 percent accuracy.

4.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076436

RESUMEN

In this paper, we propose a pen device capable of detecting specific features from dynamic handwriting tests for aiding on automatic Parkinson's disease identification. The method used in this work uses machine learning to compare the raw signals from different sensors in the device coupled to a pen and extract relevant information such as tremors and hand acceleration to diagnose the patient clinically. Additionally, the datasets composed of raw signals from healthy and Parkinson's disease patients acquired here are made available to further contribute to research related to this topic.


Asunto(s)
Escritura Manual , Monitoreo Fisiológico/instrumentación , Enfermedad de Parkinson , Aceleración , Humanos , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico , Temblor
5.
Sensors (Basel) ; 20(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331464

RESUMEN

Global industry is undergoing major transformations with the genesis of a new paradigm known as the Internet of Things (IoT) with its underlying technologies. Many company leaders are investing more effort and money in transforming their services to capitalize on the benefits provided by the IoT. Thereby, the decision makers in public waste management do not want to be outdone, and it is challenging to provide an efficient and real-time waste management system. This paper proposes a solution (hardware, software, and communications) that aims to optimize waste management and include a citizen in the process. The system follows an IoT-based approach where the discarded waste from the smart bin is continuously monitored by sensors that inform the filling level of each compartment, in real-time. These data are stored and processed in an IoT middleware providing information for collection with optimized routes and generating important statistical data for monitoring the waste collection accurately in terms of resource management and the provided services for the community. Citizens can easily access information about the public waste bins through the Web or a mobile application. The creation of the real prototype of the smart container, the development of the waste management application and a real-scale experiment use case for evaluation, demonstration, and validation show that the proposed system can efficiently change the way people deal with their garbage and optimize economic and material resources.

6.
Sensors (Basel) ; 20(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255308

RESUMEN

Several pathologies have a direct impact on society, causing public health problems. Pulmonary diseases such as Chronic obstructive pulmonary disease (COPD) are already the third leading cause of death in the world, leaving tuberculosis at ninth with 1.7 million deaths and over 10.4 million new occurrences. The detection of lung regions in images is a classic medical challenge. Studies show that computational methods contribute significantly to the medical diagnosis of lung pathologies by Computerized Tomography (CT), as well as through Internet of Things (IoT) methods based in the context on the health of things. The present work proposes a new model based on IoT for classification and segmentation of pulmonary CT images, applying the transfer learning technique in deep learning methods combined with Parzen's probability density. The proposed model uses an Application Programming Interface (API) based on the Internet of Medical Things to classify lung images. The approach was very effective, with results above 98% accuracy for classification in pulmonary images. Then the model proceeds to the lung segmentation stage using the Mask R-CNN network to create a pulmonary map and use fine-tuning to find the pulmonary borders on the CT image. The experiment was a success, the proposed method performed better than other works in the literature, reaching high segmentation metrics values such as accuracy of 98.34%. Besides reaching 5.43 s in segmentation time and overcoming other transfer learning models, our methodology stands out among the others because it is fully automatic. The proposed approach has simplified the segmentation process using transfer learning. It has introduced a faster and more effective method for better-performing lung segmentation, making our model fully automatic and robust.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen
7.
Sensors (Basel) ; 18(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103372

RESUMEN

The efficient and safe management of air conditioner (AC), Piped Natural Gas (PNG) and water pipelines in large buildings is a major challenge for the safety of these buildings. In recent years, Linear Wireless Sensor Networks (LWSN) are being used extensively for monitoring of long natural gas, water, and oil pipelines. LWSNs can also be used for efficient and safe management of AC, PNG and water pipelines in large buildings. In this paper, a scheme for optimal placement of sensors and base stations in a linear fashion to monitor the various pipelines used in large buildings has been proposed. The proposed scheme utilizes the Lion Optimization Algorithm (LOA) and has been compared with three strategies, namely Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Greedy Approach with respect to throughput, lifetime and end-to-end delay. The simulation results show that the proposed scheme exhibits better performance in comparison to the other three considered techniques for all the three parameters. The most striking feature of the proposed approach is that optimization is more effective when the length of the pipeline is more as far as end-to-end delay is concerned. The lifetime of the network is significantly improved using the proposed approach, especially when the length of the pipeline is of medium size, which makes the proposed scheme suitable for energy efficient buildings.

8.
Sensors (Basel) ; 18(6)2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890749

RESUMEN

Heart Rate Variability (HRV) is an important tool for the analysis of a patient’s physiological conditions, as well a method aiding the diagnosis of cardiopathies. Photoplethysmography (PPG) is an optical technique applied in the monitoring of the HRV and its adoption has been growing significantly, compared to the most commonly used method in medicine, Electrocardiography (ECG). In this survey, definitions of these technique are presented, the different types of sensors used are explained, and the methods for the study and analysis of the PPG signal (linear and nonlinear methods) are described. Moreover, the progress, and the clinical and practical applicability of the PPG technique in the diagnosis of cardiovascular diseases are evaluated. In addition, the latest technologies utilized in the development of new tools for medical diagnosis are presented, such as Internet of Things, Internet of Health Things, genetic algorithms, artificial intelligence and biosensors which result in personalized advances in e-health and health care. After the study of these technologies, it can be noted that PPG associated with them is an important tool for the diagnosis of some diseases, due to its simplicity, its cost⁻benefit ratio, the easiness of signals acquisition, and especially because it is a non-invasive technique.


Asunto(s)
Frecuencia Cardíaca/fisiología , Fotopletismografía/métodos , Presión Sanguínea , Humanos , Procesamiento de Señales Asistido por Computador/instrumentación , Telemedicina
9.
Sensors (Basel) ; 15(6): 12474-97, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26024416

RESUMEN

Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

10.
Phys Life Rev ; 48: 132-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219370

RESUMEN

This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.


Asunto(s)
Microondas , Enfermedades del Sistema Nervioso , Humanos , Técnicas Estereotáxicas , Tecnología , Encéfalo/fisiología
11.
J Vis Exp ; (210)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39283128

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and myocardial infarction (MI) are two major health burdens with significant prevalence and mortality. This study aimed to explore the co-expressed genes to understand the relationship between NAFLD and MI and identify potential crucial biomarkers of NAFLD-related MI using bioinformatics and machine learning. Functional enrichment analysis was conducted, a co-protein-protein interaction (PPI) network diagram was constructed, and support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) techniques were employed to identify one differentially expressed gene (DEG), Thrombospondin 1 (THBS1). THBS1 demonstrated strong performance in distinguishing NAFLD patients (AUC = 0.981) and MI patients (AUC = 0.900). Immuno-infiltration analysis revealed significantly lower CD8+ T cells and higher neutrophil levels in patients with NAFLD and MI. CD8+ T cells and neutrophils were effective in distinguishing NAFLD/MI from healthy controls. Correlation analysis showed that THBS1 was positively correlated with CCR (chemokine receptor), MHC class (major histocompatibility complex class), neutrophils, parainflammation, and Tfh (follicular helper T cells), and negatively correlated with CD8+ T cells, cytolytic activity, and TIL (tumor-infiltrating lymphocytes) in NAFLD and MI patients. THBS1 emerged as a novel biomarker for diagnosing NAFLD/MI in comparison to healthy controls. The results indicate that CD8+ T cells and neutrophils could serve as inflammatory immune features for differentiating patients with NAFLD/MI from healthy individuals.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Trombospondina 1 , Humanos , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Máquina de Vectores de Soporte , Biomarcadores/metabolismo , Biomarcadores/análisis
12.
Bioengineering (Basel) ; 10(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671687

RESUMEN

Measurement uncertainty is one of the widespread concepts applied in scientific works, particularly to estimate the accuracy of measurement results and to evaluate the conformity of products and processes. In this work, we propose a methodology to analyze the performance of measurement systems existing in the design phases, based on a probabilistic approach, by applying the Monte Carlo method (MCM). With this approach, it is feasible to identify the dominant contributing factors of imprecision in the evaluated system. In the design phase, this information can be used to identify where the most effective attention is required to improve the performance of equipment. This methodology was applied over a simulated electrocardiogram (ECG), for which a measurement uncertainty of the order of 3.54% of the measured value was estimated, with a confidence level of 95%. For this simulation, the ECG computational model was categorized into two modules: the preamplifier and the final stage. The outcomes of the analysis show that the preamplifier module had a greater influence on the measurement results over the final stage module, which indicates that interventions in the first module would promote more significant performance improvements in the system. Finally, it was identified that the main source of ECG measurement uncertainty is related to the measurand, focused towards the objective of better characterization of the metrological behavior of the measurements in the ECG.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38051611

RESUMEN

Emotion is a complex physiological and psychological activity, accompanied by subjective physiological sensations and objective physiological changes. The body sensation map describes the changes in body sensation associated with emotion in a topographic manner, but it relies on subjective evaluations from participants. Physiological signals are a more reliable measure of emotion, but most research focuses on the central nervous system, neglecting the importance of the peripheral nervous system. In this study, a body surface potential mapping (BSPM) system was constructed, and an experiment was designed to induce emotions and obtain high-density body surface potential information under negative and non-negative emotions. Then, by constructing and analyzing the functional connectivity network of BSPs, the high-density electrophysiological characteristics are obtained and visualized as bodily emotion maps. The results showed that the functional connectivity network of BSPs under negative emotions had denser connections, and emotion maps based on local clustering coefficient (LCC) are consistent with BSMs under negative emotions. in addition, our features can classify negative and non-negative emotions with the highest classification accuracy of 80.77%. In conclusion, this study constructs an emotion map based on high-density BSPs, which offers a novel approach to psychophysiological computing.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37478039

RESUMEN

With the development of brain-computer interfaces (BCI) technologies, EEG-based BCI applications have been deployed for medical purposes. Motor imagery (MI), applied to promote neural rehabilitation for stroke patients, is among the most common BCI paradigms that. The Electroencephalogram (EEG) signals, encompassing an extensive range of channels, render the training dataset a high-dimensional construct. This high dimensionality, inherent in such a dataset, tends to challenge traditional deep learning approaches, causing them to potentially disregard the intrinsic correlations amongst these channels. Such an oversight often culminates in erroneous data classification, presenting a significant drawback of these conventional methodologies. In our study, we propose a novel algorithmic structure of EEG channel-attention combined with Swin Transformer for motor pattern recognition in BCI rehabilitation. Effectively, the self-attention module from transformer architecture could captures temporal-spectral-spatial features hidden in EEG data. The experimental results verify that our proposed methods outperformed other state-of-art approaches with the average accuracy of 87.67%. It is implied that our method can extract high-level and latent connections among temporal-spectral features in contrast to traditional deep learning methods. This paper demonstrates that channel-attention combined with Swin Transformer methods has great potential for implementing high-performance motor pattern-based BCI systems.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Humanos , Imaginación , Electroencefalografía/métodos , Atención
15.
Bioengineering (Basel) ; 10(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237599

RESUMEN

Even with over 80% of the population being vaccinated against COVID-19, the disease continues to claim victims. Therefore, it is crucial to have a secure Computer-Aided Diagnostic system that can assist in identifying COVID-19 and determining the necessary level of care. This is especially important in the Intensive Care Unit to monitor disease progression or regression in the fight against this epidemic. To accomplish this, we merged public datasets from the literature to train lung and lesion segmentation models with five different distributions. We then trained eight CNN models for COVID-19 and Common-Acquired Pneumonia classification. If the examination was classified as COVID-19, we quantified the lesions and assessed the severity of the full CT scan. To validate the system, we used Resnetxt101 Unet++ and Mobilenet Unet for lung and lesion segmentation, respectively, achieving accuracy of 98.05%, F1-score of 98.70%, precision of 98.7%, recall of 98.7%, and specificity of 96.05%. This was accomplished in just 19.70 s per full CT scan, with external validation on the SPGC dataset. Finally, when classifying these detected lesions, we used Densenet201 and achieved accuracy of 90.47%, F1-score of 93.85%, precision of 88.42%, recall of 100.0%, and specificity of 65.07%. The results demonstrate that our pipeline can correctly detect and segment lesions due to COVID-19 and Common-Acquired Pneumonia in CT scans. It can differentiate these two classes from normal exams, indicating that our system is efficient and effective in identifying the disease and assessing the severity of the condition.

16.
IEEE J Biomed Health Inform ; 26(12): 5772-5782, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35511842

RESUMEN

Atrial fibrillation (AF) is a serious medical condition of the heart potentially leading to stroke, which can be diagnosed by analyzing electrocardiograms (ECG). Technologies of Artificial Intelligence of Things (AIoT) enable smart abnormality detection by analyzing streaming healthcare data from the sensor end of users. Analyzing streaming data in the cloud leads to challenges of response latency and privacy issues, and local inference by a model deployed on the user end brings difficulties in model update and customization. Therefore, we propose an AIoT Platform with AF recognition neural networks on the sensor edge with model retraining ability on a resource-constrained embedded system. To this aim, we proposed to combine simple but effective neural networks and an ECG feature selection strategy to reduce computing complexity while maintaining recognition performance. Based on the platform, we evaluated and discussed the performance, response time, and requirements for model retraining in the scenario of AF detection from ECG recordings. The proposed lightweight solution was validated with two public datasets and an ECG data stream simulation on an ATmega2560 processor, proving the feasibility of analysis and training on edge.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Inteligencia Artificial , Redes Neurales de la Computación , Electrocardiografía , Simulación por Computador
17.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359266

RESUMEN

Parkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches.

18.
Comput Intell Neurosci ; 2022: 2728866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36039344

RESUMEN

Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.


Asunto(s)
COVID-19 , Neumonía Viral , COVID-19/diagnóstico , Humanos , Aprendizaje Automático , Neumonía Viral/diagnóstico , Máquina de Vectores de Soporte , Tomografía Computarizada por Rayos X/métodos
19.
IEEE J Biomed Health Inform ; 26(8): 3607-3617, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34847047

RESUMEN

Affective brain computer interface (ABCI) enables machines to perceive, understand, express and respond to people's emotions. Therefore, it is expected to play an important role in emotional care and mental disorder detection. EEG signals are most frequently adopted as the physiology measurement in ABCI applications. Eye blinking and movements introduce lots of artifacts into raw EEG data, which seriously affect the quality of EEG signal and the subsequent emotional EEG feature engineering and recognition. In this paper, we propose a fully automatic and unsupervised ocular artifact identification and removal algorithm named automated canonical correlation analysis (CCA)-multi-channel wiener filter (MWF) (ACCAMWF). Firstly, spatial distribution entropy (SDE) and spectral entropy (SE) are computed to automatically annotate artifact segments. Then, CCA algorithm is used to extract neural signal from artifact contaminated data to further supplement the clean EEG data. Finally, MWF is trained to remove ocular artifacts from multiple channel EEG data adaptively. Extensive experiments have been carried out on semi-simulated EEG/EOG dataset and real eye blinking-contaminated EEG dataset to verify the effectiveness of our method when compared to two state-of-the-art algorithms. The results clearly demonstrate that ACCAMWF is a promising solution for removing EOG artifacts from emotional EEG data.


Asunto(s)
Artefactos , Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía/métodos , Electrooculografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador
20.
Artículo en Inglés | MEDLINE | ID: mdl-35969547

RESUMEN

Motor-modality-based brain computer interface (BCI) could promote the neural rehabilitation for stroke patients. Temporal-spatial analysis was commonly used for pattern recognition in this task. This paper introduced a novel connectivity network analysis for EEG-based feature selection. The network features of connectivity pattern not only captured the spatial activities responding to motor task, but also mined the interactive pattern among these cerebral regions. Furthermore, the effective combination between temporal-spatial analysis and network analysis was evaluated for improving the performance of BCI classification (81.7%). And the results demonstrated that it could raise the classification accuracies for most of patients (6 of 7 patients). This proposed method was meaningful for developing the effective BCI training program for stroke rehabilitation.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Electroencefalografía/métodos , Humanos , Imaginación , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA