Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Biol ; 17(5): 468-73, 2007 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17320387

RESUMEN

The circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity profiles in long days and compressed activity profiles in short days. The patterns remained consistent after release of the mice in constant darkness. Recordings of MUA in acutely prepared hypothalamic slices showed similar differences between the SCN electrical activity patterns in vitro in long and short days. In vitro recordings of neuronal subpopulations revealed that the width of the MUA activity profiles was determined by the distribution of phases of contributing units within the SCN. The subpopulation patterns displayed a significantly broader distribution in long days than in short days. Long-term recordings of single-unit activity revealed short durations of elevated activity in both short and long days (3.48 and 3.85 hr, respectively). The data indicate that coding for day length involves plasticity within SCN neuronal networks in which the phase distribution of oscillating neurons carries information on the photoperiod's duration.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano/fisiología , Neuronas , Estaciones del Año , Núcleo Supraquiasmático/fisiología , Animales , Electrofisiología , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Fotoperiodo
2.
Ann Neurol ; 64(3): 315-24, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18825664

RESUMEN

OBJECTIVE: Mammalian circadian rhythms are driven by the circadian pacemaker of the suprachiasmatic nucleus (SCN) and are synchronized to the external 24-hour light/dark cycle. After advance time zone transitions (eastbound jet lag), overt circadian rhythms require several days to adjust. The retarded adaptation may protect against acute imbalance of different brain systems. Abrupt circadian rhythm changes may trigger migraine attacks, possibly because migraineurs have an inadequate adaptation mechanism. The novel R192Q knock-in migraine mouse model carries mutated Ca(v)2.1 calcium channels, causing increased presynaptic calcium influx and neurotransmitter release. We investigated whether these mice have an abnormal adjustment to phase advance shifts. METHODS: We examined phase resetting to 6-hour advance shifts of the light/dark cycle with behavioral and electroencephalographic recordings in R192Q and wild-type mice. We recorded excitatory postsynaptic currents in the SCN, and electrical impulse frequency in vitro and in vivo. RESULTS: R192Q mice showed a more than twofold enhanced adjustment of behavioral wheel-running activity and electroencephalographic patterns, as well as enhanced shifts of electrical activity of SCN neurons in vivo. No differences were found for in vitro recordings of the electrical impulse frequency in SCN slices. INTERPRETATION: R192Q migraine mice lack the physiological retardation in circadian adaptation to phase advance shifts. The opposite findings in vivo and in vitro exclude involvement of the retinal input pathway or the phase-shifting capacity of the SCN. Thus, the physiological inhibitory process appears to be mediated by Ca(v)2.1 channel-dependent afferent signaling from extra-SCN brain areas to the SCN.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio Tipo N/genética , Ritmo Circadiano/genética , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Mutación/genética , Potenciales de Acción/genética , Sustitución de Aminoácidos/genética , Animales , Encéfalo/fisiopatología , Señalización del Calcio/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Transgénicos , Trastornos Migrañosos/fisiopatología , Actividad Motora/genética , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Retina/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatología
3.
Curr Biol ; 15(10): 886-93, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15916945

RESUMEN

BACKGROUND: Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock of the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental light-dark cycles via the retino-hypothalamic tract, which terminates predominantly in the ventral SCN of the rat. In order to understand synchronization of the clock to the external light-dark cycle, we performed ex vivo recordings of spontaneous impulse activity in SCN slices of the rat. RESULTS: We observed bimodal patterns of spontaneous impulse activity in the dorsal and ventral SCN after a 6 hr delay of the light schedule. Bisection of the SCN slice revealed a separate fast-resetting oscillator in the ventral SCN and a distinct slow-resetting oscillator in the dorsal SCN. Continuous application of the GABA(A) antagonist bicuculline yielded similar results as cut slices. Short application of bicuculline at different phases of the circadian cycle increased the electrical discharge rate in the ventral SCN but, unexpectedly, decreased activity in the dorsal SCN. CONCLUSIONS: GABA transmits phase information between the ventral and dorsal SCN oscillators. GABA can act excitatory in the dorsal SCN and inhibits neurons in the ventral SCN. We hypothesize that this difference results in asymmetrical interregional coupling within the SCN, with a stronger phase-shifting effect of the ventral on the dorsal SCN than vice versa. A model is proposed that focuses on this asymmetry and on the role of GABA in phase regulation.


Asunto(s)
Bicuculina/farmacología , Relojes Biológicos/efectos de los fármacos , Ritmo Circadiano/fisiología , Antagonistas del GABA/farmacología , Modelos Neurológicos , Núcleo Supraquiasmático/fisiología , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Conducta Animal/fisiología , Relojes Biológicos/fisiología , Electrofisiología , Técnicas Histológicas , Masculino , Fotoperiodo , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/fisiología
4.
Curr Biol ; 12(13): 1130-3, 2002 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-12121621

RESUMEN

The mammalian master clock driving circadian rhythmicity in physiology and behavior resides within the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Circadian rhythms are generated by a set of clock genes via intertwined negative and positive autoregulatory transcription-translation feedback loops. The Cryptochrome 1 and 2 genes are indispensable for molecular core oscillator function, as evident from the arrhythmic wheel-running behavior and lack of rhythmic clock gene expression in mCry1/mCry2 double-mutant mice in constant darkness. In the present study, using real-time multiunit electrode activity recordings in hypothalamic slices, we show that SCN neurons from mCry-deficient mice kept in constant darkness lack circadian oscillations in firing patterns. This proves that cryptochromes, and thus an intact circadian clockwork, are prerequisites for circadian electrical activity in SCN neurons. Interestingly, when mCry-deficient mice were kept in normal light-dark conditions and SCN slices were prepared 2 hr after the beginning of the day, a single noncircadian peak in neuronal activity was detected. This light-induced rise in electrical activity of the SCN may explain why mCry-deficient mice lack the arrhythmic short bouts of wheel-running activity and instead show apparently normal behavior in normal day-night cycles.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila , Proteínas del Ojo , Flavoproteínas/fisiología , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/fisiología , Animales , Criptocromos , Técnicas de Cultivo , Electrodos , Femenino , Flavoproteínas/genética , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/patología
5.
Curr Biol ; 13(17): 1538-42, 2003 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12956957

RESUMEN

The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Proteínas del Ojo/fisiología , Fotoperiodo , Núcleo Supraquiasmático/fisiología , Animales , Animales Modificados Genéticamente , Electrofisiología , Mediciones Luminiscentes , Masculino , Proteínas Circadianas Period , Ratas , Ratas Wistar
6.
Novartis Found Symp ; 253: 56-66; discussion 66-72, 102-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14712914

RESUMEN

The mammalian master clock driving circadian rhythmicity in physiology, metabolism, and behaviour resides within the suprachiasmatic nuclei (SCN) of the anterior hypothalamus and is composed of intertwined negative and positive autoregulatory transcription-translation feedback loops. The Cryptochrome 1 and 2 gene products act in the negative feedback loop and are indispensable for molecular core oscillator function, as evident from the arrhythmic wheel running behaviour and absence of cyclic clock gene expression in mCry1/mCry2 double mutant mice in constant darkness. Recently, we have measured real-time multi-unit electrode activity recordings in hypothalamic slices from mCry-deficient mice kept in constant darkness and observed a complete lack of circadian oscillations in firing patterns. This proves that CRY proteins, and thus an intact circadian clock, are prerequisite for circadian rhythmicity in membrane excitability in SCN neurons. Strikingly, when mCry-deficient mice are housed in normal light-dark cycles, a single non-circadian peak in neuronal activity can be detected in SCN slices prepared two hours after the beginning of the day. This light-induced increase in electric activity of the SCN suggests that deletion of the mCry genes converts the core oscillator in an hour-glass-like timekeeper and may explain why in normal day-night cycles mCry-deficient mice show apparently normal behaviour.


Asunto(s)
Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Proteínas de Drosophila , Proteínas del Ojo , Flavoproteínas/fisiología , Células Fotorreceptoras de Invertebrados , Animales , Ritmo Circadiano/genética , Criptocromos , Electrofisiología , Flavoproteínas/genética , Flavoproteínas/efectos de la radiación , Técnicas In Vitro , Luz , Ratones , Ratones Noqueados , Fotobiología , Receptores Acoplados a Proteínas G , Transducción de Señal , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación
7.
Eur J Neurosci ; 21(11): 2958-66, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15978007

RESUMEN

The suprachiasmatic nuclei (SCN) contain a major circadian pacemaker, which is regulated by photic and nonphotic stimuli. Although enkephalins are present in the SCN, their role in phase regulation of the pacemaker is largely unknown. The opioid agonist fentanyl, a homologue of morphine, is an addictive drug that induces phase shifts of circadian rhythms in hamsters. We observed that these phase shifts are blocked by naloxone, which is a critical test for true opioid receptor involvement, and conclude that opioid receptors are the sole mediators of the actions of fentanyl on the circadian timing system. A strong interaction between opioids and light input was shown by the ability of fentanyl and light to completely block each other's phase shifts of behavioural activity rhythms. Neuronal ensemble recordings in vitro provide first evidence that SCN cells show direct responses to fentanyl and react with a suppression of firing rate. Moreover, we show that fentanyl induces a strong attenuation of light-induced Syrian hamster Period 1 (shPer1) gene expression during the night. During the subjective day, we found no evidence for a role of shPer1 in mediation of fentanyl-induced phase shifts. Based on the present results, however, we cannot exclude the involvement of shPer2. Our data indicate that opioids can strongly modify the photic responsiveness of the circadian pacemaker and may do so via direct effects on SCN electrical activity and regulation of Per genes. This suggests that the pathways regulating addictive behaviour and the circadian clock intersect.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Fentanilo/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Fototransducción/efectos de los fármacos , Proteínas Nucleares/genética , Núcleo Supraquiasmático/efectos de los fármacos , Potenciales de Acción/genética , Animales , Conducta Animal/efectos de los fármacos , Proteínas de Ciclo Celular , Trastornos Cronobiológicos/inducido químicamente , Trastornos Cronobiológicos/genética , Trastornos Cronobiológicos/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Cricetinae , Regulación de la Expresión Génica/genética , Hibridación in Situ , Fototransducción/genética , Masculino , Mesocricetus , Antagonistas de Narcóticos/farmacología , Narcóticos/efectos adversos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/fisiopatología , Técnicas de Cultivo de Órganos , Proteínas Circadianas Period , Estimulación Luminosa , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatología , Factores de Transcripción/genética
8.
Proc Natl Acad Sci U S A ; 100(26): 15994-9, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14671328

RESUMEN

Circadian rhythms in neuronal ensemble, subpopulations, and single unit activity were recorded in the suprachiasmatic nuclei (SCN) of rat hypothalamic slices. Decomposition of the ensemble pattern revealed that neuronal subpopulations and single units within the SCN show surprisingly short periods of enhanced electrical activity of approximately 5 h and show maximal activity at different phases of the circadian cycle. The summed activity accounts for the neuronal ensemble pattern of the SCN, indicating that circadian waveform of electrical activity is a composed tissue property. The recorded single unit activity pattern was used to simulate the responsiveness of SCN neurons to different photoperiods. We inferred predictions on changes in peak width, amplitude, and peak time in the multiunit activity pattern and confirmed these predictions with hypothalamic slices from animals that had been kept in a short or long photoperiod. We propose that the animals' ability to code for day length derives from plasticity in the neuronal network of oscillating SCN neurons.


Asunto(s)
Ritmo Circadiano/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Simulación por Computador , Técnicas In Vitro , Cinética , Masculino , Modelos Neurológicos , Neuronas/clasificación , Especificidad de Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA