Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 4): 706-715, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904938

RESUMEN

Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics.

2.
Opt Express ; 30(12): 20980-20998, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224830

RESUMEN

A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 µm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of µm-focused X-ray beams at MHz repetition rate.

3.
J Synchrotron Radiat ; 26(Pt 1): 36-44, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655466

RESUMEN

Piezoelectric bimorph deformable mirrors (`bimorphs') are routinely used on many synchrotron and free-electron laser beamlines to provide active variation in the size and shape of the X-ray beam. However, the time-domain potential of such optics has never been fully exploited. For the first time, the fast dynamic bending response of bimorphs is investigated here using Fizeau interferometry. Automated scripts for acquisition and analysis were developed to collect Fizeau data at a rate of 0.1 Hz to record dynamic changes in the optical surface as voltages were applied to the electrodes of the piezoelectric actuators. It is demonstrated that residual drift in the tangential radius of curvature of a bimorph can be significantly reduced using enhanced opto-mechanical holders and a fast programmable high-voltage power supply. Further improvements are achieved by applying small opposing voltages to compensate for piezoelectric creep. The present study shows that bimorphs can truly be used as high-speed adaptive optics for the X-ray domain, even without closed-loop feedback correction. This opens the possibility for relatively simple real-time tuning of the profile of X-ray bimorphs. Part II of this study [Alcock, Nistea, Signorato, Owen, Axford, Sutter, Foster & Sawhney (2019), J. Synchrotron Rad. 26, 45-51] builds upon these results and demonstrates how bimorphs can rapidly provide customisable sizes and shapes of synchrotron X-ray beams, specifically tailored to suit the experimental samples being investigated.

4.
J Synchrotron Radiat ; 26(Pt 1): 45-51, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655467

RESUMEN

The tangential curvature of actively bent X-ray mirrors at synchrotron radiation and X-ray free-electron laser (XFEL) facilities is typically only changed every few hours or even days. This operation can take tens of minutes for active optics with multiple bending actuators and often requires expert guidance using in situ monitoring devices. Hence, the dynamic performance of active X-ray optics for synchrotron beamlines has historically not been exploited. This is in stark contrast to many other scientific fields. However, many areas of synchrotron radiation and XFEL science, including macromolecular crystallography, could greatly benefit from the ability to change the size and shape of the X-ray beam rapidly and continuously. The advantages of this innovative approach are twofold: a large reduction in the dead time required to change the size of the X-ray beam for different-sized samples and the possibility of making multiple changes to the beam during the measurement of a single sample. In the preceding paper [Part I; Alcock, Nistea, Signorato & Sawhney (2019), J. Synchrotron Rad. 26, 36-44], which accompanies this article, high-speed visible-light Fizeau interferometry was used to identify the factors which influence the dynamic bending behaviour of piezoelectric bimorph deformable X-ray mirrors. Building upon this ex situ metrology study, provided here is the first synchrotron radiation beamline implementation of high-speed adaptive X-ray optics using two bimorphs operating as a Kirkpatrick-Baez pair. With optimized substrates, novel opto-mechanical holders and a next-generation high-voltage power supply, the size of an X-ray beam was rapidly and repeatedly switched in <10 s. Of equal importance, it is also shown that compensation of piezoelectric creep ensures that the X-ray beam size remains stable for more than 1 h after making a major change. The era of high-speed adaptive X-ray optics for synchrotron radiation and XFEL beamlines has begun.

5.
Opt Express ; 27(11): 16121-16142, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163798

RESUMEN

The Diamond Light Source (DLS) beamline I15-1 measures atomic pair distribution functions (PDF) using scattering of 40-80 keV X-rays. A unique focusing element was needed to condense these X-rays from an initial large cross section (11.0 mm H × 4.2 mm V) into a required spot size of FWHM ≈680 µm (H) × 20 µm (V) at a variable position between the sample and the detector. The large numerical aperture is achieved by coating a silicon substrate over 1 m long with three multilayer stripes of Bragg angle 4.2 mrad. One stripe selects X-rays of each energy 40.0, 65.4, and 76.6 keV. Sixteen piezoelectric bimorph actuators attached to the sides of the mirror substrate adjusted the reflecting surface's shape. Focal spots of vertical width < 15 µm were obtained at three positions over a 0.92 m range, with fast, easy switching from one focal position to another. Minimized root mean square slope errors were close to 0.5 µrad after subtraction of a uniform curvature. Reflectivity curves taken along each stripe showed consistent high peaks with generally small angular variation of peak positions. This is the first application of a 1 m long multilayer-coated bimorph mirror at a synchrotron beamline. Data collected with its help on a slice of a lithium ion battery's cathode are presented.

6.
J Synchrotron Radiat ; 24(Pt 3): 615-621, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28452753

RESUMEN

Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

7.
J Synchrotron Radiat ; 23(Pt 6): 1333-1347, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787239

RESUMEN

Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors <5 nm r.m.s. introduce damagingly large striations into the reflected beam. To counteract such problems, surface modifications with alternating concave and convex curvature on equal segments were polished onto the surface of non-active mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

8.
J Synchrotron Radiat ; 22(1): 10-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25537582

RESUMEN

Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

9.
Opt Lett ; 39(8): 2518-21, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24979033

RESUMEN

An x-ray grating interferometer was employed for in situ optimization of an x-ray bimorph mirror. Unlike many other at-wavelength techniques, only a single interferogram image, captured out of the focal plane, is required, enabling the optical surface to be quickly optimized. Moiré fringe analysis was used to calculate the wavefront slope error, which is proportional to the mirror's slope error. Using feedback from grating interferometry, the slope error of a bimorph mirror was reduced to <200 nrad (rms) in only two iterations. This technique has the potential to create photon beams with spatially homogeneous intensities for use in synchrotron and free electron laser beam lines.

10.
Rev Sci Instrum ; 90(2): 021712, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30831713

RESUMEN

Recently, the dynamic performance of piezo-electric deformable "bimorph" mirrors for synchrotron radiation and X-ray free electron laser sources has been characterized and significantly improved. This innovation enables high intensity X-ray beams to be rapidly focused or defocused to either match to the size of the sample under test or to select different sized regions of interest in larger samples. In this paper, we extend these results by monitoring a bimorph mirror using a combination of ex situ metrology instruments. Comparison between results from the Diamond-NOM (Nanometre Optical Metrology) slope profiler, a Fizeau interferometer, and Zygo ZPSTM distance measuring probes shows that bimorph X-ray mirrors can reliably and accurately be driven at 1 Hz using advanced features recently added to the high voltage (HV), bipolar "HV-Adaptos" power supply from CAEN.

11.
Rev Sci Instrum ; 87(5): 051902, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250374

RESUMEN

We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

12.
Rev Sci Instrum ; 86(12): 125108, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26724074

RESUMEN

Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ∼0.3 nrad rms over ∼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (∼57 ndeg) angular increments over a range of >7000 µrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

13.
J Mater Chem B ; 1(44): 6157-6169, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261001

RESUMEN

The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 × 10-3 M, the bioactive PAs were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts (hCSFs), while improving the cell phenotype. These PAs also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene (PTFE), significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA