Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697010

RESUMEN

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Asunto(s)
ADN Bacteriano , Escherichia coli , Microscopía Fluorescente , Imagen Individual de Molécula , Microscopía Fluorescente/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Imagen Individual de Molécula/métodos , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Respuesta SOS en Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Unión Proteica , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Pinzas Ópticas
2.
Biochem Biophys Res Commun ; 614: 29-33, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35567941

RESUMEN

RecA is a central enzyme of homologous recombination in bacteria, which plays a major role in DNA repair, natural transformation and SOS-response activation. RecA forms nucleoprotein filaments on single-stranded DNA with a highly conserved architecture that is also shared by eukaryotic recombinases. One of the key features of these filaments is the ability to switch between stretched and compressed conformations in response to ATP binding and hydrolysis. However, the functional role of such conformational changes is not fully understood. Structural data revealed that in the absence of ATP RecA binds DNA with the stoichiometry of 5 nucleotides per one monomer, while in the presence of ATP the binding stoichiometry is 3:1. Such differences suggest incompatibility of the active and inactive conformations, yet dynamic single-molecule studies demonstrated that ATP and apo conformations can be directly interconvertible. In the present work we use a single-molecule approach to address the features of inactive RecA nucleoprotein filaments formed de novo in the absence of nucleotide cofactors. We show that compressed RecA-DNA filaments can exist with both 5:1 and 3:1 binding stoichiometry which is determined by conditions of the filament assembly. However, only a 3:1 stoichiometry allows direct interconvertibility with the active ATP-bound conformation.


Asunto(s)
Nucleoproteínas , Rec A Recombinasas , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN de Cadena Simple , Nucleoproteínas/metabolismo , Nucleótidos , Rec A Recombinasas/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036395

RESUMEN

Deinococcus radiodurans (Dr) has one of the most robust DNA repair systems, which is capable of withstanding extreme doses of ionizing radiation and other sources of DNA damage. DrRecA, a central enzyme of recombinational DNA repair, is essential for extreme radioresistance. In the presence of ATP, DrRecA forms nucleoprotein filaments on DNA, similar to other bacterial RecA and eukaryotic DNA strand exchange proteins. However, DrRecA catalyzes DNA strand exchange in a unique reverse pathway. Here, we study the dynamics of DrRecA filaments formed on individual molecules of duplex and single-stranded DNA, and we follow conformational transitions triggered by ATP hydrolysis. Our results reveal that ATP hydrolysis promotes rapid DrRecA dissociation from duplex DNA, whereas on single-stranded DNA, DrRecA filaments interconvert between stretched and compressed conformations, which is a behavior shared by E. coli RecA and human Rad51. This indicates a high conservation of conformational switching in nucleoprotein filaments and suggests that additional factors might contribute to an inverse pathway of DrRecA strand exchange.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Deinococcus/enzimología , Modelos Moleculares , Conformación Molecular , Rec A Recombinasas/química , Imagen Individual de Molécula , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Rec A Recombinasas/metabolismo , Imagen Individual de Molécula/métodos
4.
Biochem Biophys Res Commun ; 466(3): 426-30, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26365346

RESUMEN

Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differences from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Deinococcus/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Bacterianas/química , Fenómenos Biomecánicos , Reparación del ADN , Proteínas de Unión al ADN/química , Deinococcus/efectos de la radiación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Técnicas Analíticas Microfluídicas , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Pinzas Ópticas , Multimerización de Proteína , Rec A Recombinasas/química
5.
Elife ; 112022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35730924

RESUMEN

RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas
6.
Materials (Basel) ; 15(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208146

RESUMEN

A comparative study of the fracture features, strength and deformation properties of pseudo strain-hardening composites based on alkali-activated slag and Portland cement matrices with polypropylene microfiber was carried out. Correlations between their compositions and characteristics of stress-strain diagrams under tension in bending with an additional determination of acoustic emission parameters were determined. An average strength alkali-activated slag matrix with compressive strength of 40 MPa and a high-strength Portland cement matrix with compressive strength of 70 MPa were used. The matrix compositions were selected for high filling the composites with polypropylene microfiber in the amount of 5%-vol. and 3.5%-vol. ensuring the workability at the low water-to-binder ratios of 0.22 and 0.3 for Portland cement and alkali-activated slag matrices, respectively. Deformation diagrams were obtained for all studied compositions. Peaks in the number of acoustic signals in alkali-activated slag composites were observed only in the strain-softening zone. Graphs of dependence of the rate of acoustic events occurrence in samples from the start of the test experimentally prove that this method of non-destructive testing can be used to monitor structures based on strain-hardening composites.

7.
FEBS Lett ; 594(21): 3464-3476, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32880917

RESUMEN

The RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface. Binding of ADP promotes cooperative conformational transitions and directly affects mechanical properties of the filament. Our findings reveal that RecA nucleoprotein filaments are able to continuously cycle between three mechanically distinct states that might have important implications for RecA-mediated processes of HR.


Asunto(s)
ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo , Imagen Individual de Molécula , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Escherichia coli
8.
Oncotarget ; 9(8): 7796-7811, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487692

RESUMEN

Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA