Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.859
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38754421

RESUMEN

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas de Unión al ADN , Interferón Tipo I , Proteínas de la Membrana , Neoplasias , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mutación , Neoplasias/inmunología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
2.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735592

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

3.
Nat Immunol ; 23(5): 660-670, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35241833

RESUMEN

Ten years since the immune checkpoint inhibitor ipilimumab was approved for advanced melanoma, it is time to reflect on the lessons learned regarding modulation of the immune system to treat cancer and on novel approaches to further extend the efficacy of current and emerging immunotherapies. Here, we review the studies that led to our current understanding of the melanoma immune microenvironment in humans and the mechanistic work supporting these observations. We discuss how this information is guiding more precise analyses of the mechanisms of action of immune checkpoint blockade and novel immunotherapeutic approaches. Lastly, we review emerging evidence supporting the negative impact of melanoma metabolic adaptation on anti-tumor immunity and discuss how to counteract such mechanisms for more successful use of immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inmunoterapia , Ipilimumab/uso terapéutico , Melanoma/tratamiento farmacológico , Microambiente Tumoral
4.
Nat Immunol ; 23(11): 1600-1613, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271148

RESUMEN

Naïve CD8+ T cells can differentiate into effector (Teff), memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff, Tmem and Tex populations remain poorly understood. Here, we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets, including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2, as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator, Btg1, in establishing the Tex population. Finally, these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections.


Asunto(s)
Linfocitos T CD8-positivos , Coriomeningitis Linfocítica , Humanos , Linfocitos T CD8-positivos/metabolismo , Transcriptoma , Virus de la Coriomeningitis Linfocítica , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , Coriomeningitis Linfocítica/metabolismo
5.
Nat Immunol ; 23(1): 40-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937928

RESUMEN

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Asunto(s)
Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E/inmunología , Coronavirus Humano OC43/inmunología , Protección Cruzada/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunidad Adaptativa/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Niño , Preescolar , Reacciones Cruzadas/inmunología , Humanos
6.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902637

RESUMEN

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Asunto(s)
Vacunas contra la Influenza , Adulto , Humanos , Inmunidad Humoral , Estaciones del Año , Linfocitos T Colaboradores-Inductores , Vacunación
7.
Cell ; 176(4): 775-789.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595452

RESUMEN

Tumor immune cell compositions play a major role in response to immunotherapy, but the heterogeneity and dynamics of immune infiltrates in human cancer lesions remain poorly characterized. Here, we identify conserved intratumoral CD4 and CD8 T cell behaviors in scRNA-seq data from 25 melanoma patients. We discover a large population of CD8 T cells showing continuous progression from an early effector "transitional" into a dysfunctional T cell state. CD8 T cells that express a complete cytotoxic gene set are rare, and TCR sharing data suggest their independence from the transitional and dysfunctional cell states. Notably, we demonstrate that dysfunctional T cells are the major intratumoral proliferating immune cell compartment and that the intensity of the dysfunctional signature is associated with tumor reactivity. Our data demonstrate that CD8 T cells previously defined as exhausted are in fact a highly proliferating, clonal, and dynamically differentiating cell population within the human tumor microenvironment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Melanoma/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología
8.
Nat Immunol ; 22(5): 620-626, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674800

RESUMEN

The immune response to SARS-CoV-2 is critical in controlling disease, but there is concern that waning immunity may predispose to reinfection. We analyzed the magnitude and phenotype of the SARS-CoV-2-specific T cell response in 100 donors at 6 months following infection. T cell responses were present by ELISPOT and/or intracellular cytokine staining analysis in all donors and characterized by predominant CD4+ T cell responses with strong interleukin (IL)-2 cytokine expression. Median T cell responses were 50% higher in donors who had experienced a symptomatic infection, indicating that the severity of primary infection establishes a 'set point' for cellular immunity. T cell responses to spike and nucleoprotein/membrane proteins were correlated with peak antibody levels. Furthermore, higher levels of nucleoprotein-specific T cells were associated with preservation of nucleoprotein-specific antibody level although no such correlation was observed in relation to spike-specific responses. In conclusion, our data are reassuring that functional SARS-CoV-2-specific T cell responses are retained at 6 months following infection.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Inmunidad Celular , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , COVID-19/sangre , COVID-19/virología , Femenino , Interacciones Huésped-Patógeno , Humanos , Interleucina-2/sangre , Masculino , Persona de Mediana Edad , Fenotipo , SARS-CoV-2/patogenicidad , Factores de Tiempo , Adulto Joven
9.
Immunity ; 56(12): 2699-2718.e11, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091951

RESUMEN

Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rß-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.


Asunto(s)
Linfocitos T CD8-positivos , Factores de Transcripción , Factores de Transcripción/genética , Interleucina-2 , Regulación de la Expresión Génica , Receptor de Muerte Celular Programada 1/metabolismo
10.
Immunity ; 55(3): 557-574.e7, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263570

RESUMEN

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.


Asunto(s)
Epigenómica , Activación de Linfocitos , Linfocitos T CD8-positivos , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Humanos , Activación de Linfocitos/genética
11.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693351

RESUMEN

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , N-Glicosil Hidrolasas/metabolismo , Animales , Sistema Libre de Células/química , Reactivos de Enlaces Cruzados/química , ADN/biosíntesis , ADN/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Ficusina/química , N-Glicosil Hidrolasas/química , Xenopus laevis
12.
Cell ; 167(6): 1540-1554.e12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912061

RESUMEN

Therapeutic blocking of the PD1 pathway results in significant tumor responses, but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Melanoma/inmunología , Melanoma/terapia , Radioinmunoterapia , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Xenoinjertos , Humanos , Interferones/inmunología , Melanoma/tratamiento farmacológico , Melanoma/radioterapia , Ratones , Trasplante de Neoplasias , Factor de Transcripción STAT1 , Linfocitos T/inmunología
14.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
15.
Nature ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862026

RESUMEN

Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study1, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight2, but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts3, which can inform countermeasure development for both private and government-sponsored space missions.

16.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32396847

RESUMEN

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epigénesis Genética/inmunología , Neoplasias/inmunología , Subgrupos de Linfocitos T/inmunología , Transcripción Genética/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Epigénesis Genética/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/genética , Neoplasias/terapia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcripción Genética/genética
17.
Nature ; 615(7954): 854-857, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922597

RESUMEN

The timing of delivery and the types of body that contributed volatiles to the terrestrial planets remain highly debated1,2. For example, it is unknown if differentiated bodies, such as that responsible for the Moon-forming giant impact, could have delivered substantial volatiles3,4 or if smaller, undifferentiated objects were more probable vehicles of water delivery5-7. Here we show that the water contents of minerals in achondrite meteorites (mantles or crusts of differentiated planetesimals) from both the inner and outer portions of the early Solar System are ≤2 µg g-1 H2O. These are among the lowest values ever reported for extraterrestrial minerals. Our results demonstrate that differentiated planetesimals efficiently degassed before or during melting. This finding implies that substantial amounts of water could only have been delivered to Earth by means of unmelted material.

19.
Immunity ; 51(5): 840-855.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31606264

RESUMEN

TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Redes Reguladoras de Genes , Factor 1 de Transcripción de Linfocitos T/metabolismo , Transcripción Genética , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Enfermedad Crónica , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Factor 1 de Transcripción de Linfocitos T/genética , Virosis/genética , Virosis/inmunología , Virosis/virología
20.
Mol Cell ; 78(3): 411-422.e4, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220646

RESUMEN

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.


Asunto(s)
MicroARNs/química , Proteínas de Unión al ARN/química , Ribonucleasa III/química , Microscopía por Crioelectrón , Humanos , MicroARNs/metabolismo , Modelos Moleculares , Conformación Proteica , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA