Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicology ; 31(2): 234-250, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34973137

RESUMEN

Mercury (Hg) is an environmental contaminant that can negatively impact human and wildlife health. For songbirds, Hg risk may be elevated near riparian habitats due to the transfer of methylmercury (MeHg) from aquatic to terrestrial food webs. We measured Hg levels in tail feathers sampled across the breeding range of the Yellow-breasted Chat (Icteria virens), a riparian songbird species of conservation concern. We assessed the risk of Hg toxicity based on published benchmarks. Simultaneously, we measured corticosterone, a hormone implicated in the stress response system, released via the hypothalamus-pituitary-adrenal axis. To better understand range-wide trends in Hg and corticosterone, we examined whether age, sex, subspecies, or range position were important predictors. Lastly, we examined whether Hg and corticosterone were correlated. Hg levels in chats were relatively low: 0.30 ± 0.02 µg/g dry weight. 148 out of 150 (98.6%) had Hg levels considered background, and 2 (1.6%) had levels considered low toxicity risk. Hg levels were similar between sexes and subspecies. Younger chats (<1 year) had higher Hg levels than older chats (>1 year). Hg levels were lowest in the northern and central portion of the eastern subspecies' range. Corticosterone concentrations in feathers averaged 3.68 ± 0.23 pg/mm. Corticosterone levels were similar between ages and sexes. Western chats had higher levels of corticosterone than eastern chats. Hg and corticosterone were not correlated, suggesting these low Hg burdens did not affect the activity of the hypothalamus-pituitary-adrenal axis. Altogether, the chat has low Hg toxicity risk across its breeding range, despite living in riparian habitats.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Passeriformes , Animales , Corticosterona , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad
2.
Ecol Appl ; 29(3): e01865, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30860659

RESUMEN

Surrogate species are commonly used in conservation science due to the fact that it is not feasible to measure and manage each component of biodiversity independently; yet, there is much debate about their efficacy. We use long-term monitoring data from six national park units in northern California and southern Oregon to test the focal species approach, wherein a suite of species is selected whose habitat requirements collectively encompass those of co-occurring species. Specifically, we examine how well existing Partners in Flight (PIF) habitat-based focal species lists and empirically derived focal species lists represent vegetation and three avian assemblages of interest: the entire assemblage, species of concern, and common species in steep decline. Existing PIF focal species lists were significantly correlated with the three alternative matrices of avian assemblages and vegetation, but not all parks and alternate matrices performed with equal correlative strength and/or significance. For example, existing PIF focal species lists were significantly correlated to the entire assemblage at five of the six parks and had ecologically meaningful correlations (>0.70) at four. However, PIF focal species list correlations with park specific species of concern and common species in steep declined varied widely, with correlations between 0.040-0.943 and 0.210-0.556, respectively. Averaged across park units the empirical focal species lists developed to represent both vegetation metrics and species of concern improved correlation with all alternative matrices of avian assemblages and vegetation metrics. We found that the focal species approach generally represented the entire avian community, but did not adequately represent suites of species of concern or common species in decline. Empirical testing is a critical step in validating or refining suites of focal species at management relevant scales, and in some instances, a more refined focal species list may increase overall utility of the surrogate species approach.


Asunto(s)
Aves , Bosques , Animales , Biodiversidad , California , Ecosistema , Oregon
3.
Chemphyschem ; 18(14): 1943-1955, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28393449

RESUMEN

Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO2 >γ-Al2 O3 >TiO2 /SiO2 >Al2 O3 /SiO2 , and the activation energy of ketonization decreases in the order γ-Al2 O3 >CeO2 /SiO2 . Nano-oxide CeO2 /SiO2 was found to selectively catalyze the ketonization reaction.

4.
J Ornithol ; 163(1): 37-50, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096508

RESUMEN

Detailed information spanning the full annual cycle is lacking for most songbird populations. We examined breeding, migration, and non-breeding sites for the Yellow-breasted Chat (Icteria virens, chat). We deployed archival GPS tags and light-level geolocators on breeding chats in British Columbia and light-level geolocators in California from 2013 to 2017 to determine migration routes and non-breeding sites. We examined whether chats overwintered in protected areas and characterized the percent of land cover within 1 km. We used a combination of genetics and stable hydrogen isotopes from feathers collected on non-breeding chats in Nayarit, Mexico (2017-2019) and migrating chats in Chiapas, Mexico (2018) and Veracruz, Mexico (2014-2015) to determine subspecies and infer breeding location. Endangered chats in British Columbia followed the Pacific Flyway and spent the non-breeding period in Sinaloa and Nayarit, Mexico. Two out of five chats spent the non-breeding period in protected areas, and the most common landcover type used was tropical or subtropical broadleaf deciduous forest. We found no mixing of eastern and western chats in our Mexico sites, suggesting strong migratory connectivity at the subspecies level. Western chats likely originating from multiple breeding latitudes spent the non-breeding period in Nayarit. Eastern Yellow-breasted Chats likely breeding across various latitudes migrated through Veracruz and Chiapas. Our results provide precise migration routes and non-breeding locations, and describe habitat cover types for chats, notably an endangered population in British Columbia, which may be valuable for habitat protection and conservation efforts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10336-021-01931-8.

5.
Nat Commun ; 13(1): 5906, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207329

RESUMEN

Negative ions are important in many areas of science and technology, e.g., in interstellar chemistry, for accelerator-based radionuclide dating, and in anti-matter research. They are unique quantum systems where electron-correlation effects govern their properties. Atomic anions are loosely bound systems, which with very few exceptions lack optically allowed transitions. This limits prospects for high-resolution spectroscopy, and related negative-ion detection methods. Here, we present a method to measure negative ion binding energies with an order of magnitude higher precision than what has been possible before. By laser-manipulation of quantum-state populations, we are able to strongly reduce the background from photodetachment of excited states using a cryogenic electrostatic ion-beam storage ring where keV ion beams can circulate for up to hours. The method is applicable to negative ions in general and here we report an electron affinity of 1.461 112 972(87) eV for 16O.

6.
Appl Spectrosc ; 75(2): 137-144, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32597682

RESUMEN

We present a new method to maintain constant gas pressure over a sample during in situ measurements. The example shown here is a differentially pumped high-pressure X-ray photoelectron spectroscopy system, but this technique could be applied to many in situ instruments. By using the pressure of the differential stage as a feedback source to change the sample position, a new level of consistency has been achieved. Depending on the absolute value of the sample-to-aperture distance, this technique allows one to maintain the distance within several hundred nanometers, which is below the limit of typical optical microscopy systems. We show that this method is well suited to compensate for thermal drift. Thus, X-ray photoelectron spectroscopy data can be acquired continuously while the sample is heated and maintaining constant pressure over the sample. By implementing a precise manipulator feedback system, pressure variations of less than 5% were reached while the temperature was varied by 400 ℃. The system is also shown to be highly stable under significant changes in gas flow. After changing the flow by a factor of two, the pressure returned to the set value within 60 s.

7.
BMC Infect Dis ; 10: 187, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573228

RESUMEN

BACKGROUND: Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). METHODS: We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. RESULTS: Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first day of the year when a county is snow free. CONCLUSIONS: Although the prevalence of influenza in waterfowl has long been appreciated, we show that 22 species of song birds and perching birds (order Passeriformes) are influenza reservoirs in the contiguous US.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Passeriformes/virología , Medición de Riesgo , Animales , Cloaca/virología , Geografía , Modelos Estadísticos , Prevalencia , Estados Unidos
8.
Ecol Evol ; 9(8): 4431-4442, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031917

RESUMEN

Assessment and preservation of biodiversity has been a central theme of conservation biology since the discipline's inception. However, when diversity estimates are based purely on measures of presence-absence, or even abundance, they do not directly assess in what way focal habitats support the life history needs of individual species making up biological communities. Here, we move beyond naïve measures of occurrence and introduce the concept of "informed diversity" indices which scale estimates of avian species richness and community assemblage by two critical phases of their life cycle: breeding and molt. We tested the validity of the "informed diversity" concept using bird capture data from multiple locations in northern California and southern Oregon to examine patterns of species richness among breeding, molting, and naïve (based solely on occurrence) bird communities at the landscape and local scales using linear regression, community similarity indices, and a Detrended Correspondence Analysis (DCA). At the landscape scale, we found a striking pattern of increased species richness for breeding, molting, and naïve bird communities further inland and at higher elevations throughout the study area. At the local scale, we found that some sites with species-rich naïve communities were in fact species-poor when informed by breeding status, indicating that naïve richness may mask more biologically meaningful patterns of diversity. We suggest that land managers use informed diversity estimates instead of naïve measures of diversity to identify ecologically valuable wildlife habitat.

9.
Chempluschem ; 81(9): 1003-1013, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31968802

RESUMEN

Temperature-programmed desorption mass spectrometry (TPD MS) was used to study the pyrolysis of PDMS and its composites with nanosized silica and ceria/silica. The results suggest that the elusive organosilicon compound, dimethylsilanone, is generated from PDMS over a broad temperature range (in some cases starting at 70 °C). The presence of nano-oxides catalyzes this process. Ions characteristic of the fragmentation of dimethylsilanone under electron ionization are assigned with the aid of DFT structure calculations. Possible reaction mechanisms for dimethylsilanone generation are discussed in the context of the calculated kinetic parameters. Observed accompanying products of PDMS pyrolysis, such as tetramethylcyclodisiloxane and hexamethylcyclotrisiloxane, indicate that multiple channels are involved in the dimethylsilanone release.

10.
PLoS One ; 11(10): e0163906, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27732625

RESUMEN

We examined avian community ecology in the Klamath Ecoregion and determined that individual bird species co-exist spatially to form 29 statistically distinguishable bird groups. We identified climate, geography, and vegetation metrics that are correlated with these 29 bird groups at three scales: Klamath Ecoregion, vegetation formation (agriculture, conifer, mixed conifer/hardwood, shrubland), and National Park Service unit. Two climate variables (breeding season mean temperature and temperature range) and one geography variable (elevation) were correlated at all scales, suggesting that for some vegetation formations and park units there is sufficient variation in climate and geography to be an important driver of bird communities, a level of variation we expected only at the broader scale. We found vegetation to be important at all scales, with coarse metrics (environmental site potential and existing vegetation formation) meaningful across all scales and structural vegetation patterns (e.g. succession, disturbance) important only at the scale of vegetation formation or park unit. Additionally, we examined how well six National Park Service units represent bird communities in the broader Klamath Ecoregion. Park units are inclusive of most bird communities with the exception of the oak woodland community; mature conifer forests are well represented, primarily associated with conifer canopy and lacking multi-layered structure. Identifying environmental factors that shape bird communities at three scales within this region is important; such insights can inform local and regional land management decisions necessary to ensure bird conservation in this globally significant region.


Asunto(s)
Aves/fisiología , Agricultura , Animales , Biodiversidad , California , Clima , Análisis por Conglomerados , Ecosistema , Bosques , Oregon
11.
PLoS One ; 4(9): e6825, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19724641

RESUMEN

By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages.


Asunto(s)
Aves/fisiología , Cambio Climático , Algoritmos , Animales , Biodiversidad , California , Clima , Conservación de los Recursos Naturales , Ecosistema , Extinción Biológica , Geografía , Análisis Multivariante , Dinámica Poblacional , Probabilidad , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA