Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 173(1): 140-152.e15, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570993

RESUMEN

Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.


Asunto(s)
Neuronas/metabolismo , Dolor/patología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Analgésicos Opioides/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Conducta Animal/efectos de los fármacos , Dieta , Conducta Alimentaria/efectos de los fármacos , Formaldehído/toxicidad , Glutamato Descarboxilasa/metabolismo , Locomoción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Neuronas/efectos de los fármacos , Dolor/etiología , Dolor/metabolismo , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal
2.
Nature ; 632(8025): 585-593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987598

RESUMEN

The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.


Asunto(s)
Fármacos Antiobesidad , Reacción de Prevención , Receptor del Péptido 1 Similar al Glucagón , Vías Nerviosas , Rombencéfalo , Respuesta de Saciedad , Animales , Femenino , Masculino , Ratones , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/farmacología , Área Postrema/metabolismo , Área Postrema/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Obesidad/metabolismo , Rombencéfalo/citología , Rombencéfalo/efectos de los fármacos , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Alimentos
3.
Nature ; 612(7941): 739-747, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517598

RESUMEN

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Asunto(s)
Eje Cerebro-Intestino , Dopamina , Ejercicio Físico , Microbioma Gastrointestinal , Motivación , Carrera , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Dopamina/metabolismo , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Células Receptoras Sensoriales/metabolismo , Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Ejercicio Físico/fisiología , Ejercicio Físico/psicología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/psicología , Modelos Animales , Humanos , Estriado Ventral/citología , Estriado Ventral/metabolismo , Carrera/fisiología , Carrera/psicología , Recompensa , Individualidad
4.
Nature ; 600(7888): 269-273, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789878

RESUMEN

The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.


Asunto(s)
Mantenimiento del Peso Corporal/genética , Mantenimiento del Peso Corporal/fisiología , Cerebelo/fisiología , Alimentos , Biosíntesis de Proteínas , Genética Inversa , Respuesta de Saciedad/fisiología , Adulto , Animales , Regulación del Apetito/genética , Regulación del Apetito/fisiología , Núcleos Cerebelosos/citología , Núcleos Cerebelosos/fisiología , Cerebelo/citología , Señales (Psicología) , Dopamina/metabolismo , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Femenino , Homeostasis , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Neostriado/metabolismo , Neuronas/fisiología , Obesidad/genética , Filosofía , Adulto Joven
5.
J Neurosci ; 37(2): 362-370, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077715

RESUMEN

Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT: Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data characterize the excitatory nature of neural projections activated by cisplatin in rats and reveal the necessity of specific hindbrain-forebrain projections for cisplatin-induced anorexia and weight loss. Together, these findings help to characterize the neural mechanisms mediating cisplatin-induced anorexia, advancing opportunities to develop better-tolerated chemotherapies and adjuvant therapies to prevent anorexia and concurrent nutritional deficiencies during cancer treatment.


Asunto(s)
Amígdala del Cerebelo/fisiología , Anorexia/inducido químicamente , Cisplatino/toxicidad , Núcleos Parabraquiales/fisiología , Núcleo Solitario/fisiología , Pérdida de Peso/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Anorexia/fisiopatología , Antineoplásicos/toxicidad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
6.
J Neurosci ; 35(31): 11094-104, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245970

RESUMEN

Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT: To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of thousands of patients undergo chemotherapies each year, the neural mechanisms mediating their side effects are unknown. The current data outline a neural circuit activated by cisplatin chemotherapy and demonstrate that glutamate signaling in the amygdala, arising from hindbrain projections, is required for the full expression of cisplatin-induced malaise, anorexia, and body weight loss. Together, these data help to characterize the neural circuits and neurotransmitters mediating chemotherapy-induced energy balance dysregulation, which will ultimately provide an opportunity for the development of well tolerated cancer and anti-emetic treatments.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Amigdalino Central/efectos de los fármacos , Cisplatino/farmacología , Metabolismo Energético/efectos de los fármacos , Pica/metabolismo , Receptores de Glutamato/metabolismo , Rombencéfalo/efectos de los fármacos , Animales , Núcleo Amigdalino Central/metabolismo , Metabolismo Energético/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Rombencéfalo/metabolismo
7.
Am J Physiol Endocrinol Metab ; 309(8): E759-66, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26330345

RESUMEN

Although central PYY delivery potently increases food intake, the sites of action and mechanisms mediating these hyperphagic effects are not fully understood. The present studies investigate the contribution of lateral parabrachial nucleus (lPBN) PYY-Y receptor signaling to food intake control, as lPBN neurons express Y receptors and receive PYY fibers and are known to integrate circulating and visceral sensory signals to regulate energy balance. Immunohistochemical results identified a subpopulation of gigantocellular reticular nucleus PYY-producing neurons that project monosynaptically to the lPBN, providing an endogenous source of PYY to the lPBN. lPBN microinjection of PYY-(1-36) or PYY-(3-36) markedly increased food intake by increasing meal size. To determine which receptors mediate these behavioral results, we first performed quantitative real-time PCR to examine the relative levels of Y receptor expression in lPBN tissue. Gene expression analyses revealed that, while Y1, Y2, and Y5 receptors are each expressed in lPBN tissue, Y1 receptor mRNA is expressed at fivefold higher levels than the others. Furthermore, behavioral/pharmacological results demonstrated that the hyperphagic effects of PYY-(3-36) were eliminated by lPBN pretreatment with a selective Y1 receptor antagonist. Together, these results highlight the lPBN as a novel site of action for the intake-stimulatory effects of central PYY-Y1 receptor signaling.


Asunto(s)
Conducta Alimentaria/fisiología , Núcleos Parabraquiales/metabolismo , Fragmentos de Péptidos/metabolismo , Péptido YY/metabolismo , ARN Mensajero/metabolismo , Receptores de Neuropéptido Y/genética , Animales , Conducta Alimentaria/efectos de los fármacos , Masculino , Microinyecciones , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/fisiología , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Neuropéptido Y/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 308(9): R800-6, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25740340

RESUMEN

Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 µg) or mNTS (0.3 µg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons.


Asunto(s)
Ingestión de Alimentos/fisiología , Receptores de Oxitocina/metabolismo , Saciedad/fisiología , Transducción de Señal/fisiología , Núcleo Solitario/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/genética
9.
Am J Physiol Regul Integr Comp Physiol ; 307(4): R465-70, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24944243

RESUMEN

Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons.


Asunto(s)
Regulación del Apetito , Conducta Animal , Ingestión de Alimentos , Motivación , Receptores de Glucagón/metabolismo , Núcleo Solitario/metabolismo , Animales , Regulación del Apetito/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Condicionamiento Operante , Dieta Alta en Grasa , Sacarosa en la Dieta , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Preferencias Alimentarias , Receptor del Péptido 1 Similar al Glucagón , Masculino , Microinyecciones , Motivación/efectos de los fármacos , Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/agonistas , Esquema de Refuerzo , Transducción de Señal , Núcleo Solitario/efectos de los fármacos , Factores de Tiempo , Ponzoñas/administración & dosificación
10.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1338-44, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25298514

RESUMEN

Pontine parabrachial nucleus (PBN) neurons integrate visceral, oral, and other sensory information, playing an integral role in the neural control of feeding. Current experiments probed whether lateral PBN (lPBN) leptin receptor (LepRb) signaling contributes to this function. Intra-lPBN leptin microinjection significantly reduced cumulative chow intake, average meal size, and body weight in rats, independent of effects on locomotor activity or gastric emptying. In contrast to the effects observed following LepRb activation in other nuclei, lPBN LepRb stimulation did not affect progressive ratio responding for sucrose reward or conditioned place preference for a palatable food. Collectively, results suggest that lPBN LepRb activation reduces food intake by modulating the neural processing of meal size/satiation signaling, and highlight the lPBN as a novel site of action for leptin-mediated food intake control.


Asunto(s)
Ingestión de Alimentos/fisiología , Núcleos Parabraquiales/fisiología , Receptores de Leptina/fisiología , Transducción de Señal/fisiología , Animales , Peso Corporal/efectos de los fármacos , Acueducto del Mesencéfalo/efectos de los fármacos , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Vaciamiento Gástrico/efectos de los fármacos , Leptina/administración & dosificación , Leptina/farmacología , Masculino , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/efectos de los fármacos , Saciedad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Am J Physiol Endocrinol Metab ; 305(11): E1367-74, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24105414

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) activation in the ventral tegmental area (VTA) is physiologically relevant for the control of palatable food intake. Here, we tested whether the food intake-suppressive effects of VTA GLP-1R activation are mediated by glutamatergic signaling within the VTA. Intra-VTA injections of the GLP-1R agonist exendin-4 (Ex-4) reduced palatable high-fat food intake in rats primarily by reducing meal size; these effects were mediated in part via glutamatergic AMPA/kainate but not NMDA receptor signaling. Additional behavioral data indicated that GLP-1R expressed specifically within the VTA can partially mediate the intake- and body weight-suppressive effects of systemically administered Ex-4, offering the intriguing possibility that this receptor population may be clinically relevant for food intake control. Intra-VTA Ex-4 rapidly increased tyrosine hydroxylase levels within the VTA, suggesting that GLP-1R activation modulates VTA dopaminergic signaling. Further evidence for this hypothesis was provided by electrophysiological data showing that Ex-4 increased the frequency of AMPA-mediated currents and reduced the paired/pulse ratio in VTA dopamine neurons. Together, these data provide novel mechanisms by which GLP-1R agonists in the mesolimbic reward system control for palatable food intake.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Receptores AMPA/fisiología , Receptores de Glucagón/agonistas , Receptores de Ácido Kaínico/fisiología , Área Tegmental Ventral/efectos de los fármacos , Animales , Depresores del Apetito/farmacología , Dieta Alta en Grasa , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Receptor del Péptido 1 Similar al Glucagón , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/fisiología , Recompensa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Área Tegmental Ventral/metabolismo
12.
Cell Mol Gastroenterol Hepatol ; 16(2): 189-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37172823

RESUMEN

The detection of nutrients in the gut influences ongoing and future feeding behavior as well as the development of food preferences. In addition to nutrient sensing in the intestine, the hepatic portal vein plays a considerable role in detecting ingested nutrients and conveying this information to brain nuclei involved in metabolism, learning, and reward. Here, we review mechanisms underlying hepatic portal vein sensing of nutrients, particularly glucose, and how this is relayed to the brain to influence feeding behavior and reward. We additionally highlight several gaps where future research can provide new insights into the effects of portal nutrients on neural activity in the brain and feeding behavior.


Asunto(s)
Glucosa , Vena Porta , Vena Porta/metabolismo , Glucosa/metabolismo , Conducta Alimentaria , Recompensa , Ingestión de Alimentos
13.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786670

RESUMEN

Objective: The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). Methods: Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. Results: We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. Conclusions: Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and update these associations on fast timescales. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.

14.
Cell Rep ; 42(11): 113338, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37910501

RESUMEN

Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.


Asunto(s)
Hambre , Hipotálamo , Humanos , Hambre/fisiología , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Inflamación/metabolismo
15.
Mol Metab ; 78: 101833, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925021

RESUMEN

OBJECTIVE: The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). METHODS: Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. RESULTS: We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. CONCLUSIONS: Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Ingestión de Alimentos/fisiología , Ingestión de Energía , Conducta Alimentaria/fisiología , Neuronas/metabolismo
16.
Neuron ; 110(2): 180-182, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35051361

RESUMEN

Humans and animals alike perform behaviors-like putting on a sweater or building a warm nest-to regulate body temperature. In this issue of Neuron, Jung et al. (2022) reveal a parabrachial nucleus-to-lateral hypothalamus circuit that regulates thermoregulatory behavior, a circuit distinct from that which governs motivated feeding behavior.


Asunto(s)
Hambre , Área Hipotalámica Lateral , Animales , Regulación de la Temperatura Corporal , Conducta Alimentaria/fisiología , Área Hipotalámica Lateral/fisiología , Neuronas/fisiología
17.
Am J Physiol Endocrinol Metab ; 300(6): E1002-11, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21406615

RESUMEN

The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.


Asunto(s)
Frío , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Homeostasis/genética , Homeostasis/fisiología , Neuronas/metabolismo , Proopiomelanocortina/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Animales , Ghrelina/sangre , Hipotálamo/metabolismo , Luz , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Neuronas/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , ARN/biosíntesis , ARN/genética , ARN/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Ghrelina/biosíntesis , Transducción de Señal/fisiología , Telemetría , Termogénesis/fisiología , Hormonas Tiroideas/sangre , Tirotropina/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 301(5): R1479-85, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21849636

RESUMEN

The incretin and food intake suppressive effects of intraperitoneally administered glucagon-like peptide-1 (GLP-1) involve activation of GLP-1 receptors (GLP-1R) expressed on vagal afferent fiber terminals. Central nervous system processing of GLP-1R-driven vagal afferents results in satiation signaling and enhanced insulin secretion from pancreatic-projecting vagal efferents. As the vast majority of endogenous GLP-1 is released from intestinal l-cells following ingestion, it stands to reason that paracrine GLP-1 signaling, activating adjacent GLP-1R expressed on vagal afferent fibers of gastrointestinal origin, contributes to glycemic and food intake control. However, systemic GLP-1R-mediated control of glycemia is currently attributed to endocrine action involving GLP-1R expressed in the hepatoportal bed on terminals of the common hepatic branch of the vagus (CHB). Here, we examine the hypothesis that activation of GLP-1R expressed on the CHB is not required for GLP-1's glycemic and intake suppressive effects, but rather paracrine signaling on non-CHB vagal afferents is required to mediate GLP-1's effects. Selective CHB ablation (CHBX), complete subdiaphragmatic vagal deafferentation (SDA), and surgical control rats received an oral glucose tolerance test (2.0 g glucose/kg) 10 min after an intraperitoneal injection of the GLP-1R antagonist, exendin-(9-39) (Ex-9; 0.5 mg/kg) or vehicle. CHBX and control rats showed comparable increases in blood glucose following blockade of GLP-1R by Ex-9, whereas SDA rats failed to show a GLP-1R-mediated incretin response. Furthermore, GLP-1(7-36) (0.5 mg/kg ip) produced a comparable suppression of 1-h 25% glucose intake in both CHBX and control rats, whereas intake suppression in SDA rats was blunted. These findings support the hypothesis that systemic GLP-1R mediation of glycemic control and food intake suppression involves paracrine-like signaling on GLP-1R expressed on vagal afferent fibers of gastrointestinal origin but does not require the CHB.


Asunto(s)
Depresores del Apetito/farmacología , Regulación del Apetito/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Hígado/inervación , Fragmentos de Péptidos/farmacología , Receptores de Glucagón/agonistas , Nervio Vago/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Péptido 1 Similar al Glucagón/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón , Prueba de Tolerancia a la Glucosa , Antagonistas de Hormonas/farmacología , Inyecciones Intraperitoneales , Masculino , Comunicación Paracrina , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Factores de Tiempo , Vagotomía , Nervio Vago/metabolismo , Nervio Vago/cirugía
19.
Science ; 374(6567): 547-548, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34709901
20.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33558881

RESUMEN

Appropriate food intake requires exquisite coordination between the gut and the brain. Indeed, it has long been known that gastrointestinal signals communicate with the brain to promote or inhibit feeding behavior. Recent advances in the ability to monitor and manipulate neural activity in awake, behaving rodents has facilitated important discoveries about how gut signaling influences neural activity and feeding behavior. This review emphasizes recent studies that have advanced our knowledge of gut-brain signaling and food intake control, with a focus on how gut signaling influences in vivo neural activity in animal models. Moving forward, dissecting the complex pathways and circuits that transmit nutritive signals from the gut to the brain will reveal fundamental principles of energy balance, ultimately enabling new treatment strategies for diseases rooted in body weight control.


Asunto(s)
Encéfalo/metabolismo , Ingestión de Alimentos , Tracto Gastrointestinal/metabolismo , Animales , Conducta Alimentaria , Tracto Gastrointestinal/inervación , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA