RESUMEN
The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.
RESUMEN
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Asunto(s)
Dendrímeros , Dendrímeros/química , Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Transfección , Solubilidad , Sistemas de Liberación de MedicamentosRESUMEN
STUDY DESIGN: Descriptive secondary analysis of two spinal cord injury (SCI) animal models. OBJECTIVES: To compare the somatosensory evoked potential (SSEP) and motor behavioral (BBB) assessments of the two most used rodent SCI models (contusion and transection), to elucidate their functional similarity and differences over the acute phase of 3 weeks. SETTING: Neuro-electrophysiology SSEP and motor behavioral BBB assessments are used to provide a comparative analysis of the functional changes among various severities of contusion and transection SCI. METHODS: Adult male and female rats randomly grouped (n = 5) as following: mild (6.25 mm), moderate (12.5 mm), severe (25 mm), and very severe (50 mm) contusion as well as right T10 hemi-transection (RxI), left T8 and right T10 double hemi-transection (DxI), and T8 complete transection (CxI) injuries, plus the control group (laminectomy with no injury). Animal weight, body temperature, anesthesia, surgical procedures, electrophysiological SSEP monitoring, locomotion BBB scoring, and statistical analysis were identical among all animal groups. RESULTS: Statistical analysis of the SSEP and BBB data from both contusion and transection injury models indicate significant differences (P < 0.05). The results also show remarkable similarity for the severe and very severe contusion injuries to the complete transection, the moderate contusion injury to the double hemi-transection, and the mild contusion injury to the T10 hemi-transection injury. CONCLUSION: Although contusion and transection spinal cord injuries have two completely different pathophysiologies, their injury progress during acute phase follow a similar trend.
Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Animales , Femenino , Masculino , Ratas , Modelos Animales de Enfermedad , Potenciales Evocados Somatosensoriales/fisiología , Locomoción , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/diagnósticoRESUMEN
Upconversion nanoparticle-mediated optogenetics enables remote delivery of upconverted visible light from a near-infrared light source to targeted neurons or areas, with the precision of a pulse of laser light in vivo for effective deep-tissue neuromodulation. Compared to conventional optogenetic tools, upconversion nanoparticle-based optogenetic techniques are less invasive and cause reduced inflammation with minimal levels of tissue damage. In addition to the optical stimulation, this design offers simultaneously temperature recording in proximity to the stimulated area. This chapter strives to provide life science researchers with an introduction to upconversion optogenetics, starting from the fundamental concept of photon upconversion and nanoparticle fabrication to the current state-of-the-art of surface engineering and device integration for minimally invasive neuromodulation.
Asunto(s)
Nanopartículas , Optogenética , Rayos Infrarrojos , Neuronas , FotonesRESUMEN
Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real-time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative inâ situ tracking of retrograde transport neurons with single-particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra-axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.
Asunto(s)
Nanopartículas del Metal/química , Proteínas Motoras Moleculares/metabolismo , Neuronas/metabolismo , Animales , Axones/química , Axones/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Reprogramación Celular , Dineínas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Rayos Infrarrojos , Ratones , Microscopía Fluorescente , Neuronas/citología , Transporte de Proteínas , RatasRESUMEN
BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.
Asunto(s)
Hipotermia , Traumatismos de la Médula Espinal , Humanos , Ratas , Masculino , Femenino , Animales , Traumatismos de la Médula Espinal/terapia , Potenciales Evocados Somatosensoriales/fisiología , Sistema Nervioso Central , Plasticidad Neuronal/fisiología , Médula EspinalRESUMEN
Upconversion nanoparticles (UCNPs) are a class of nanomaterials composed of lanthanide ions with great potential for paraclinical applications, especially in laboratory and imaging sciences. UCNPs have tunable optical properties and the ability to convert long-wavelength (low energy) excitation light into short-wavelength (high energy) emission in the ultraviolet (UV)-visible and near-infrared (NIR) spectral regions. The core-shell structure of UCNPs can be customized through chemical synthesis to meet the needs of different applications. The surface of UCNPs can also be tailored by conjugating small molecules and/or targeting ligands to achieve high specificity and selectivity, which are indispensable elements in biomedical applications. Specifically, coatings can enhance the water dispersion, biocompatibility, and efficiency of UCNPs, thereby optimizing their functionality and boosting their performance. In this context, multimodal imaging can provide more accurate in vivo information when combined with nuclear imaging. This article intends to provide a comprehensive review of the core structure, structure optimization, surface modification, and various recent applications of UCNPs in biomolecular detection, cell imaging, tumor diagnosis, and deep tissue imaging. We also present and discuss some of their critical challenges, limitations, and potential future directions.
Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Elementos de la Serie de los Lantanoides/química , Nanopartículas/química , Humanos , Animales , Neoplasias/diagnóstico por imagenRESUMEN
OBJECTIVE: Neuroprotection by hypothermia has been an important research topic over last two decades. In animal models of spinal cord injury, the primary focus has been assessing the effects of hypothermia on behavioral and histologic outcomes. Although a few studies have investigated electrophysiological changes in descending motor pathways with motor-evoked potentials recorded during cooling, we report here hypothermia induced increased electrical conduction in the ascending spinal cord pathways with somatosensory-evoked potentials in injured rats. In our experiments, these effects lasted long after the acute hypothermia and were accompanied by potential long-term improvements in motor movement. DESIGN: Laboratory investigation. SETTING: University medical school. SUBJECTS: Twenty-one female Lewis rats. INTERVENTIONS: Hypothermia. MEASUREMENTS AND MAIN RESULTS: All animals underwent spinal cord contusion with the NYU-Impactor by a 12.5-mm weight drop at thoracic vertebra T8. A group (n = 10) was randomly assigned for a systemic 2-hr hypothermia episode (32 ± 0.5°C) initiated approximately 2.0 hrs postinjury. Eleven rats were controls with postinjury temperature maintained at 37 ± 0.5°C for 2 hrs. The two groups underwent preinjury, weekly postinjury (up to 4 wks) somatosensory-evoked potential recordings and standard motor behavioral tests (BBB). Three randomly selected rats from each group were euthanized for histologic analysis at postinjury day 3 and day 28. Compared with controls, the hypothermia group showed significantly higher postinjury somatosensory-evoked potential amplitudes with longer latencies. The BBB scores were also higher immediately after injury and 4 wks later in the hypothermia group. Importantly, specific changes in the Basso, Beattie, Bresnahan scores in the hypothermia group (not seen in controls) indicated regained functions critical for motor control. Histologic evaluations showed more tissue preservation in the hypothermia group. CONCLUSIONS: After spinal cord injury, early systemic hypothermia provided significant neuroprotection weeks after injury through improved sensory electrophysiological signals in rats. This was accompanied by higher motor behavioral scores and more spared tissue in acute and postacute periods after injury.
Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Hipotermia Inducida/métodos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/terapia , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , Electrodos Implantados , Femenino , Regeneración Nerviosa/fisiología , Distribución Aleatoria , Ratas , Ratas Endogámicas Lew , Recuperación de la Función , Valores de Referencia , Medición de Riesgo , Resultado del TratamientoRESUMEN
Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI.
RESUMEN
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Asunto(s)
Encéfalo , Nanopartículas , Administración Intranasal , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Polímeros/farmacologíaRESUMEN
Oligodendrocytes (OLs) are glial cells of the central nervous system, which produce myelin. Cultured OLs provide immense therapeutic opportunities for treating a variety of neurological conditions. One of the most promising sources for such therapies is human embryonic stem cells (ESCs) as well as providing a model to study human OL development. For these purposes, an investigation of proteome level changes is critical for understanding the process of OL differentiation. In this report, an iTRAQ-based quantitative proteomic approach was used to study multiple steps during OL differentiation including neural progenitor cells, glial progenitor cells and oligodendrocyte progenitor cells (OPCs) compared to undifferentiated ESCs. Using a 1% false discovery rate cutoff, â¼3145 proteins were quantitated and several demonstrated progressive stage-specific expression. Proteins such as transferrin, neural cell adhesion molecule 1, apolipoprotein E and wingless-related MMTV integration site 5A showed increased expression from the neural progenitor cell to the OPC stage. Several proteins that have demonstrated evidence or been suspected in OL maturation were also found upregulated in OPCs including fatty acid-binding protein 4, THBS1, bone morphogenetic protein 1, CRYAB, transferrin, tenascin C, COL3A1, TGFBI and EPB41L3. Thus, by providing the first extensive proteomic profiling of human ESC differentiation into OPCs, this study provides many novel proteins that are potentially involved in OL development.
Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Oligodendroglía/citología , Proteómica , Células Madre/citología , Animales , Linaje de la Célula , Cromatografía de Gases y Espectrometría de Masas , Humanos , Inmunohistoquímica , Ratones , TiempoRESUMEN
Transplantation of glial progenitor cells results in transplant-derived myelination and improved function in rodents with genetic dysmyelination or chemical demyelination. However, glial cell transplantation in adult CNS inflammatory demyelinating models has not been well studied. Here we transplanted human glial-restricted progenitor (hGRP) cells into the spinal cord of adult rats with inflammatory demyelination, and monitored cell fate in chemically immunosuppressed animals. We found that hGRPs migrate extensively, expand within inflammatory spinal cord lesions, do not form tumors, and adopt a mature glial phenotype, albeit at a low rate. Human GRP-transplanted rats, but not controls, exhibited preserved electrophysiological conduction across the spinal cord, though no differences in behavioral improvement were noted between the two groups. Although these hGRPs myelinated extensively after implantation into neonatal shiverer mouse brain, only marginal remyelination was observed in the inflammatory spinal cord demyelination model. The low rate of transplant-derived myelination in adult rat spinal cord may reflect host age, species, transplant environment/location, and/or immune suppression regime differences. We conclude that hGRPs have the capacity to myelinate dysmyelinated neonatal rodent brain and preserve conduction in the inflammatory demyelinated adult rodent spinal cord. The latter benefit is likely dependent on trophic support and suggests further exploration of potential of glial progenitors in animal models of chronic inflammatory demyelination.
Asunto(s)
Enfermedades Desmielinizantes/cirugía , Mediadores de Inflamación/fisiología , Mielitis/cirugía , Neuroglía/fisiología , Neuroglía/trasplante , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Animales Recién Nacidos , Proliferación Celular , Supervivencia Celular/fisiología , Células Cultivadas , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Femenino , Supervivencia de Injerto/fisiología , Humanos , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Mielitis/patología , Mielitis/fisiopatología , Neuroglía/citología , Neuroglía/patología , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/fisiología , Células Madre/citología , Células Madre/patologíaRESUMEN
In this paper, we investigate the forelimbs somatosensory evoked potential (SSEP) signals, which are representative of the integrity of ascending sensory pathways and their stability as well as function, recorded from corresponding cortices, post thoracic spinal cord injury (SCI). We designed a series of distinctive transection SCI to investigate whether forelimbs SSEPs change after right T10 hemi-transection, T8 and T10 double hemi-transection and T8 complete transection in rat model of SCI. We used electrical stimuli to stimulate median nerves and recorded SSEPs from left and right somatosensory areas of both cortices. We monitored pre-injury baseline and verified changes in forelimbs SSEP signals on Days 4, 7, 14, and 21 post-injury. We previously characterized hindlimb SSEP changes for the abovementioned transection injuries. The focus of this article is to investigate the quality and quantity of changes that may occur in the forelimb somatosensory pathways post-thoracic transection SCI. It is important to test the stability of forelimb SSEPs following thoracic SCI because of their potential utility as a proxy baseline for the traumatic SCIs in clinical cases wherein there is no opportunity to gather baseline of the lower extremities. We observed that the forelimb SSEP amplitudes increased following thoracic SCI but gradually returned to the baseline. Despite changes found in the raw signals, statistical analysis found forelimb SSEP signals become stable relatively soon. In summary, though there are changes in value (with p > 0.05), they are not statistically significant. Therefore, the null hypothesis that the mean of the forelimb SSEP signals are the same across multiple days after injury onset cannot be rejected during the acute phase.
Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Miembro Anterior/fisiopatología , Corteza Somatosensorial/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Current developments being made in upper limb prostheses are focused on replacing lost sensory information to the amputees. Providing sensory stimulation from the prosthesis can directly improve control over the prosthetic and provide a sense of body ownership. The focus of this review article is on recent developments while including foundational knowledge for some of the critical concepts in neural prostheses. Reported concepts follow the flow of information from sensors to signal processing, with emphasis on texture recognition, and then to sensory stimulation strategies that reestablish the lost sensory feedback loop. Prosthetic sensors are used to detect the physical environment, converting pressure, force, and position into electrical signals. The electrical signals can then be processed in an effort to identify the surrounding environment using distinctive characteristics such as stiffness and texture. In order for the amputee to use this information in a natural manner, there must be real-time sensory stimulation, perception, and motor control of the prosthesis. Although truly complete sensory replacement has not yet been realized, some basic percepts can be partially restored, allowing progress towards a more realistic prosthesis with natural sensations.
Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Extremidad Superior/fisiología , Estimulación Eléctrica , Humanos , Extremidad Superior/inervaciónRESUMEN
A reliable outcome measurement is needed to assess the effects of experimental lesions in the rat spinal cord as well as to assess the benefits of therapies designed to modulate them. The Basso, Beattie, and Bresnahan (BBB) behavioral scores can be indicative of the functionality in motor pathways. However, since lesions are often induced in the more accessible dorsal parts associated with the sensory pathways, the BBB scores may not be ideal measure of the disability. We propose somatosensory evoked potential (SEP) as a complementary measure to assess the integrity of sensory pathways. We used the focal experimental autoimmune encephalomyelitis (EAE) model, in which focal demyelinating lesions were induced by injecting cytokine-ethidium bromide into dorsal white matter after MOG-IFA immunization. Both the SEP and BBB measures reflected injury; however, the SEP was uniformly and consistently altered after the injury whereas the BBB varied widely. The results suggest that the SEP measures are more sensitive and reliable markers of focal spinal cord demyelination compared to the behavioral measures like the BBB score.
Asunto(s)
Encefalomielitis Autoinmune Experimental/fisiopatología , Potenciales Evocados Somatosensoriales/fisiología , Movimiento/fisiología , Análisis de Varianza , Animales , Conducta Animal , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Extremidades/inervación , Femenino , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/efectos adversos , Glicoproteína Mielina-Oligodendrócito , Ratas , Ratas Endogámicas Lew , Tiempo de Reacción/fisiología , Índice de Severidad de la Enfermedad , Médula Espinal/patología , Factores de TiempoRESUMEN
This study utilized a contusion model of spinal cord injury (SCI) in rats using the standardized NYU-MASCIS impactor, after which oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (ESC) were transplanted into the spinal cord to study their survival and migration route toward the areas of injury. One critical aspect of successful cell-based SCI therapy is the time of injection following injury. OPCs were injected at two clinically relevant times when most damage occurs to the surrounding tissue, 3 and 24 hours following injury. Migration and survivability after eight days was measured postmortem. In-vitro immunofluorescence revealed that most ESC-derived OPCs expressed oligodendrocyte markers, including CNPase, GalC, Olig1, O4, and O1. Results showed that OPCs survived when injected at the center of injury and migrated away from the injection sites after one week. Histological sections revealed integration of ESC-derived OPCs into the spinal cord with contusion injury without disruption to the parenchyma. Cells survived for a minimum of eight days after injury, without tumor or cyst formation. The extent of injury and effect of early cell transplant was measured using behavioral and electrophysiological assessments which demonstrated increased neurological responses in rats transplanted with OPCs compared to controls.
Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/cirugía , Animales , Antígenos/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Gangliósidos/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Antígenos O/metabolismo , Proteoglicanos/metabolismo , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción SOXE/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Células Madre/métodosRESUMEN
Patients who suffered from spinal cord injury (SCI) that come to healthcare professionals for diagnosis and treatment do not have electrophysiology baseline of somatosensory evoked potential (SSEP). The SSEP has always been used in research for data comparison to detect onset and severity of the SCI as well as for assessing its progress, endogenous and therapeutic recovery. This unmet need has motivated us to develop a new tool to substitute the baseline data with forelimb SSEP data of the same day. In this study, we report the development and investigation of three distinctive thoracic transections (right T10 hemi-transection (Rxl), left T8 and right T10 double hemi-transection (Dxl) and T8 complete transection (Cxl)) spinal cord injuries in an adult rat model. We used our well-established monitoring methods to obtain SSEP baselines as well as post-injury signals from days 4, 7, 14 and 21. We observed that spectral coherences obtained from non-injured spinal cord pathways are always above 0.8. The spectral coherence is dimensionless measure with values between 0 and 1 and measures the correlation between two time signals in the frequency domain. Analysis of variance (ANOVA) results also showed that there is a significant difference between the spectral coherence componanet means before and after injury with reaching p = 0.05 for Rxl, p = 0.02 for DxI, and p = 0.00 for CxI. Our signal processing enables us to replicate comparable detection of the natural history of injuries longitudinally without the implication of baseline SSEP signals, highlighting the potential of this analysis method for clinical studies.
Asunto(s)
Potenciales Evocados Somatosensoriales , Traumatismos de la Médula Espinal , Animales , Miembro Anterior , Humanos , Ratas , Procesamiento de Señales Asistido por Computador , Médula EspinalRESUMEN
Standardization of spinal cord injury (SCI) models is crucial for reproducible injury in research settings and their objective assessments. Basso, Beattie and Bresnahan (BBB) scoring, the traditional behavioral evaluation method, is subjective and susceptible to human error. On the other hand, neuro-electrophysiological monitoring, such as somatosensory evoked potential (SSEP), is an objective assessment method that can be performed continuously for longitudinal studies. We implemented both SSEP and BBB assessments on transection SCI model. Five experimental groups are designed as follows: left hemi-transection at T8, right hemi-transection at T10, double hemi-transection at left T8 and right T10, complete transection at T8 and control group which receives only laminectomy with intact dura and no injury on spinal cord parenchyma. On days 4, 7, 14 and 21 post-injury, first BBB scores in awake and then SSEP signals in anesthetized rats were obtained. Our results show SSEP signals and BBB scores are both closely associated with transection model and injury progression. However, the two assessment modalities demonstrate different sensitivity in measuring injury progression when it comes to late-stage double hemi-transection, complete transection and hemi-transection injury. Furthermore, SSEP amplitudes are found to be distinct in different injury groups and the progress of their attenuation is increasingly rapid with more severe transection injuries. It is evident from our findings that SSEP and BBB methods provide distinctive and valuable information and could be complementary of each other. We propose incorporating both SSEP monitoring and conventional BBB scoring in SCI research to more effectively standardize injury progression.
Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Actividad Motora/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Potenciales Evocados Motores/fisiología , Femenino , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismoRESUMEN
Functional electrical stimulation (FES) has been widely adopted to elicit muscle contraction in rehabilitation training after spinal cord injury (SCI). Conventional FES modalities include stimulations coupled with rowing, cycling, assisted walking and other derivatives. In this review, we studied thirteen clinical reports from the past 5 years and evaluated the effects of various FES aided rehabilitation plans on the functional recovery after SCI, highlighting upper and lower extremity strength, cardiopulmonary function, and balder control. We further explored potential mechanisms of FES using the Hebbian theory and lumbar locomotor central pattern generators. Overall, FES can be used to improve respiration, circulation, hand strength, mobility, and metabolism after SCI.
Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Rehabilitación Neurológica/métodos , Traumatismos de la Médula Espinal/terapia , Animales , Gatos , Generadores de Patrones Centrales/fisiología , Terapia Combinada , Terapia por Estimulación Eléctrica/instrumentación , Prueba de Esfuerzo , Terapia por Ejercicio , Regulación de la Expresión Génica , Humanos , Masculino , Modelos Neurológicos , Fatiga Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/fisiopatología , Rehabilitación Neurológica/instrumentación , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Vejiga Urinaria/fisiopatología , Trastornos Urinarios/etiología , Trastornos Urinarios/rehabilitaciónRESUMEN
Reliable outcome measurement is needed for spinal cord injury research to critically evaluate the severity of injury and recovery thereafter. However, such measurements can sometimes be affected by minor, injury to the spinal cord during surgical procedures, including laminectomy. The open-field Basso, Beattie and Bresnahan (BBB) behavior motor scores are subjective and prone to human error. We investigated somatosensory evoked potential (SEP) as an electrophysiological measure to assess the integrity of the spinal cord after injury. In our experiment, control rats with a minor unintentional spinal cord insult during laminectomy showed a decrease in SEP amplitude by 16% to 18%, which recovered in around 7 days. However, there was no change in the BBB scores for the same animals over the same period. This highlights the sensitivity of SEP to minor insult as compared to BBB. These differences may be beneficial in accurate evaluation of the severity and progression of spinal cord injury, and subsequent recovery.