Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 15(12): 1116-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326751

RESUMEN

Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of γδ T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in γδ T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family.


Asunto(s)
Quitinasas/inmunología , Glicoproteínas/inmunología , Lectinas/inmunología , Infecciones por Nematodos/inmunología , Infiltración Neutrófila/inmunología , beta-N-Acetilhexosaminidasas/inmunología , Animales , Proteína 1 Similar a Quitinasa-3 , Citotoxicidad Inmunológica/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunidad Innata/inmunología , Inflamación/inmunología , Interleucina-17/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nematodos , Neutrófilos/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T/inmunología , Transfección
2.
Proc Natl Acad Sci U S A ; 120(33): e2307513120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549299

RESUMEN

The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.


Asunto(s)
Demencia Vascular , Hipertensión , Ratones , Humanos , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Arterias Cerebrales/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(26): e2204581119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727988

RESUMEN

The brain microcirculation is increasingly viewed as a potential target for disease-modifying drugs in the treatment of Alzheimer's disease patients, reflecting a growing appreciation of evidence that cerebral blood flow is compromised in such patients. However, the pathogenic mechanisms in brain resistance arteries underlying blood flow defects have not yet been elucidated. Here we probed the roles of principal vasodilatory pathways in cerebral arteries using the APP23 mouse model of Alzheimer's disease, in which amyloid precursor protein is increased approximately sevenfold, leading to neuritic plaques and cerebrovascular accumulation of amyloid-ß similar to those in patients with Alzheimer's disease. Pial arteries from APP23 mice (18 mo old) exhibited enhanced pressure-induced (myogenic) constriction because of a profound reduction in ryanodine receptor-mediated, local calcium-release events ("Ca2+ sparks") in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. The ability of the endothelial cell inward rectifier K+ (Kir2.1) channel to cause dilation was also compromised. Acute application of amyloid-ß 1-40 peptide to cerebral arteries from wild-type mice partially recapitulated the BK dysfunction seen in APP23 mice but had no effect on Kir2.1 function. If mirrored in human Alzheimer's disease, these tandem defects in K+ channel-mediated vasodilation could account for the clinical cerebrovascular presentation seen in patients: reduced blood flow and crippled functional hyperemia. These data direct future research toward approaches that reverse this dual vascular channel dysfunction, with the ultimate aim of restoring healthy cerebral blood flow and improving clinical outcomes.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Señalización del Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Músculo Liso Vascular , Miocitos del Músculo Liso , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/irrigación sanguínea , Arterias Cerebrales/metabolismo , Modelos Animales de Enfermedad , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Vasodilatación
4.
Blood ; 139(10): 1575-1587, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-34780600

RESUMEN

Advances in our understanding of ADAMTS13 structure, and the conformation changes required for full activity, have rejuvenated the possibility of its use as a thrombolytic therapy. We have tested a novel Ala1144Val ADAMTS13 variant (constitutively active [ca] ADAMTS13) that exhibits constitutive activity, characterized using in vitro assays of ADAMTS13 activity, and greatly enhanced thrombolytic activity in 2 murine models of ischemic stroke, the distal FeCl3 middle cerebral artery occlusion (MCAo) model and transient middle cerebral artery occlusion (tMCAO) with systemic inflammation and ischemia/reperfusion injury. The primary measure of efficacy in both models was restoration of regional cerebral blood flow (rCBF) to the MCA territory, which was determined using laser speckle contrast imaging. The caADAMTS13 variant exhibited a constitutively active conformation and a fivefold enhanced activity against fluorescence resonance energy transfer substrate von Willebrand factor 73 (FRETS-VWF73) compared with wild-type (wt) ADAMTS13. Moreover, caADAMTS13 inhibited VWF-mediated platelet capture at subphysiological concentrations and enhanced t-PA/plasmin lysis of fibrin(ogen), neither of which were observed with wtADAMTS13. Significant restoration of rCBF and reduced lesion volume was observed in animals treated with caADAMTS13. When administered 1 hour after FeCl3 MCAo, the caADAMTS13 variant significantly reduced residual VWF and fibrin deposits in the MCA, platelet aggregate formation, and neutrophil recruitment. When administered 4 hours after reperfusion in the tMCAo model, the caADAMTS13 variant induced a significant dissolution of platelet aggregates and a reduction in the resulting tissue hypoperfusion. The caADAMTS13 variant represents a potentially viable therapeutic option for the treatment of acute ischemic stroke, among other thrombotic indications, due to its enhanced in vitro and in vivo activities that result from its constitutively active conformation.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Proteína ADAMTS13/genética , Animales , Antiinflamatorios/uso terapéutico , Fibrina , Fibrinolíticos/uso terapéutico , Infarto de la Arteria Cerebral Media/patología , Ratones , Accidente Cerebrovascular/tratamiento farmacológico , Factor de von Willebrand/uso terapéutico
5.
Cerebrovasc Dis ; : 1-10, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38952101

RESUMEN

INTRODUCTION: We know little about the evolution of perihaematomal oedema (PHO) >24 h after ICH onset. We aimed to determine the trajectory of PHO after ICH onset and its association with outcome. METHODS: We did a prospective cohort study using a pre-specified scanning protocol in adults with first-ever spontaneous ICH and measured absolute PHO volumes on CT head scans at ICH diagnosis and 3 ± 2, 7 ± 2, and 14 ± 2 days after ICH onset. We used the largest ICH if ICHs were multiple. The primary outcomes were (a) the trajectory of PHO after ICH onset and (b) the association between PHO (absolute volume at the time when most repeat CT head scans were obtained, and change in PHO volume at this time compared with the first CT head scan) and poor functional outcome (modified Rankin scale 3-6 at 90 days). We pre-specified multivariable logistic regression models of this association adjusting analyses for potential confounders: age, GCS, infratentorial ICH location, and intraventricular extension. RESULTS: In 106 participants of whom 49 (46%) were female, with a median ICH volume 7 mL (interquartile range [IQR] 2-22 mL), the trajectory of median PHO volume increased from 14 mL (IQR: 7-26 mL) at diagnosis to 18 mL (IQR: 8-40 mL) at 3 ± 2 days (n = 87), 20 mL (IQR: 8-48 mL) at 7 ± 2 days (n = 93) and 21 mL (IQR: 10-54 mL) at 14 ± 2 days (n = 78) (p = <0.001). PHO volume at each time point was collinear with ICH volume at diagnosis (│r│ >0.7), but the change in PHO volume between diagnosis and each time point was not. Given collinearity, we used total lesion (i.e., ICH + PHO) volume instead of PHO volume in a logistic regression model of its association at each time point with outcome. Increasing total lesion (ICH + PHO) volume at day 7 ± 2 was associated with poor functional outcome (adjusted OR per mL 1.02, 95% CI: 1.00-1.03; p = 0.036), but the increase in PHO volume between diagnosis and day 7 ± 2 was not associated with poor functional outcome (adjusted OR per mL 1.03, 95% CI: 0.99-1.07; p = 0.132). CONCLUSION: PHO volume increases throughout the first 2 weeks after onset of mild to moderate ICH. Total lesion (ICH + PHO) volume at day 7 ± 2 was associated with poor functional outcome, but the change in PHO volume between diagnosis and day 7 ± 2 was not. Prospective cohort studies with larger sample sizes are needed to investigate these associations and their modifiers.

6.
Eur J Nucl Med Mol Imaging ; 50(4): 1051-1083, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437425

RESUMEN

The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.


Asunto(s)
Enfermedad de Alzheimer , Accidente Cerebrovascular , Humanos , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Transporte Biológico
7.
Immunology ; 165(4): 460-480, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35137954

RESUMEN

The NLRP3 inflammasome is a multiprotein complex that regulates caspase-1 activation and subsequent interleukin (IL)-1ß and IL-18 release from innate immune cells in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF) limit both expression and release of IL-1ß following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI, 4OI and DMF pretreatments inhibit pro-inflammatory cytokine production in response to lipopolysaccharide (LPS), as well as inhibit subsequent NLRP3 inflammasome activation induced by nigericin. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia, OHSCs and human macrophages in response to nigericin and imiquimod, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1ß release. DMF, an approved treatment of multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism for DMF in multiple sclerosis through NLRP3 inhibition. The derivatives also reduced pro-IL-1α cleavage in response to the calcium ionophore ionomycin. Together, these findings reveal the immunometabolic regulation of both the priming and activation steps of NLRP3 activation in macrophages. Furthermore, we highlight itaconate and fumarate derivatives as potential therapeutic options in NLRP3- and IL-1α-driven diseases, including in the brain.


Asunto(s)
Inflamasomas , Esclerosis Múltiple , Animales , Caspasa 1/metabolismo , Caspasas/metabolismo , Fumaratos/metabolismo , Fumaratos/farmacología , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/farmacología , Succinatos
8.
Immunology ; 167(4): 558-575, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35881080

RESUMEN

Post-stroke infection is a common complication of stroke that is associated with poor outcome. We previously reported that stroke induces an ablation of multiple sub-populations of B cells and reduces levels of immunoglobulin M (IgM) antibody, which coincides with the development of spontaneous bacterial pneumonia. The loss of IgM after stroke could be an important determinant of infection susceptibility and highlights this pathway as a target for intervention. We treated mice with a replacement dose of IgM-enriched intravenous immunoglobulin (IgM-IVIg) prior to and 24 h after middle cerebral artery occlusion (MCAO) and allowed them to recover for 2- or 5-day post-surgery. Treatment with IgM-IVIg enhanced bacterial clearance from the lung after MCAO and improved lung pathology but did not impact brain infarct volume. IgM-IVIg treatment induced immunomodulatory effects systemically, including rescue of splenic plasma B cell numbers and endogenous mouse IgM and IgA circulating immunoglobulin concentrations that were reduced by MCAO. Treatment attenuated MCAO-induced elevation of selected pro-inflammatory cytokines in the lung. IgM-IVIg treatment did not increase the number of lung mononuclear phagocytes or directly modulate macrophage phagocytic capacity but enhanced phagocytosis of Staphylococcus aureus bioparticles in vitro. Low-dose IgM-IVIg contributes to increased clearance of spontaneous lung bacteria after MCAO likely via increasing availability of antibody in the lung to enhance opsonophagocytic activity. Immunomodulatory effects of IgM-IVIg treatment may also contribute to reduced levels of damage in the lung after MCAO. IgM-IVIg shows promise as an antibacterial and immunomodulatory agent to use in the treatment of post-stroke infection.


Asunto(s)
Infecciones Bacterianas , Accidente Cerebrovascular , Ratones , Animales , Inmunoglobulinas Intravenosas/uso terapéutico , Factores Inmunológicos , Inmunoglobulina M , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Bacterias , Pulmón
9.
Cerebrovasc Dis ; 51(4): 461-472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34983048

RESUMEN

INTRODUCTION: Stroke is characterized by deleterious oxidative stress. Selenoprotein enzymes are essential endogenous antioxidants, and detailed insight into their role after stroke could define new therapeutic treatments. This systematic review aimed to elucidate how blood selenoprotein concentration and activity change in the acute phase of stroke. METHODS: We searched PubMed, EMBASE, and Medline databases for studies measuring serial blood selenoprotein concentration or activity in acute stroke patients or in stroke patients compared to non-stroke controls. Meta-analyses of studies stratified by the type of stroke, blood compartment, and type of selenoprotein measurement were conducted. RESULTS: Eighteen studies and data from 941 stroke patients and 708 non-stroke controls were included in this review. Glutathione peroxidase (GPx) was the only identified selenoprotein, and its activity was most frequently measured. Results from 12 studies and 693 patients showed that compared to non-stroke controls in acute ischaemic stroke patients, the GPx activity increased in haemolysate (standardized mean difference [SMD]: 0.27, 95% CI: 0.07-0.47) but decreased in plasma (mean difference [MD]: -1.08 U/L, 95% CI: -1.94 to -0.22) and serum (SMD: -0.54, 95% CI: -0.91 to -0.17). From 4 identified studies in 106 acute haemorrhagic stroke patients, the GPx activity decreased in haemolysate (SMD: -0.40, 95% CI: -0.68 to -0.13) and remained unchanged in plasma (MD: -0.10 U/L, 95% CI: -0.81 to 0.61) and serum (MD: -5.00 U/mL, 95% CI: -36.17 to 26.17) compared to non-stroke controls. Results from studies assessing the GPx activity in the haemolysate compartment were inconsistent and characterized by high heterogeneity. CONCLUSIONS: Our results suggest a reduction of the blood GPx activity in acute ischaemic stroke patients, a lack of evidence regarding a role for GPx in haemorrhagic stroke patients, and insufficient evidence for other selenoproteins.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Hemorrágico , Accidente Cerebrovascular Isquémico , Selenoproteínas , Antioxidantes , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patología , Glutatión Peroxidasa , Accidente Cerebrovascular Hemorrágico/diagnóstico , Accidente Cerebrovascular Hemorrágico/patología , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/patología , Selenio , Selenoproteínas/metabolismo
10.
Brain ; 144(6): 1869-1883, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33723589

RESUMEN

We studied the effects of systemic infection on brain cytokine level and cerebral vascular function in Alzheimer's disease and vascular dementia, in superior temporal cortex (Brodmann area 22) from Alzheimer's disease patients (n = 75), vascular dementia patients (n = 22) and age-matched control subjects (n = 46), stratified according to the presence or absence of terminal systemic infection. Brain cytokine levels were measured using Mesoscale Discovery Multiplex Assays and markers of cerebrovascular function were assessed by ELISA. Multiple brain cytokines were elevated in Alzheimer's disease and vascular dementia: IL-15 and IL-17A were maximally elevated in end-stage Alzheimer's disease (Braak tangle stage V-VI) whereas IL-2, IL-5, IL12p40 and IL-16 were highest in intermediate Braak tangle stage III-IV disease. Several cytokines (IL-1ß, IL-6, TNF-α, IL-8 and IL-15) were further raised in Alzheimer's disease with systemic infection. Cerebral hypoperfusion-indicated by decreased MAG:PLP1 and increased vascular endothelial growth factor-A (VEGF)-and blood-brain barrier leakiness, indicated by raised levels of fibrinogen, were exacerbated in Alzheimer's disease and vascular dementia patients, and also in non-dementia controls, with systemic infection. Amyloid-ß42 level did not vary with infection or in association with brain cytokine levels. In controls, cortical perfusion declined with increasing IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-13 and tumour necrosis factor-α (TNF-α) but these relationships were lost with progression of Alzheimer's disease, and with infection (even in Braak stage 0-II brains). Cortical platelet-derived growth factor receptor-ß (PDGFRß), a pericyte marker, was reduced, and endothelin-1 (EDN1) level was increased in Alzheimer's disease; these were related to amyloid-ß level and disease progression and only modestly affected by systemic infection. Our findings indicate that systemic infection alters brain cytokine levels and exacerbates cerebral hypoperfusion and blood-brain barrier leakiness associated with Alzheimer's disease and vascular dementia, independently of the level of insoluble amyloid-ß, and highlight systemic infection as an important contributor to dementia, requiring early identification and treatment in the elderly population.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Sepsis/complicaciones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Encéfalo/patología , Circulación Cerebrovascular , Citocinas/inmunología , Demencia Vascular/complicaciones , Femenino , Humanos , Masculino , Sepsis/inmunología
11.
BMC Nephrol ; 23(1): 38, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042473

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is an independent risk factor for stroke. Stroke is also an independent risk factor for worse CKD outcomes and inflammation may contribute to this bidirectional relationship. This study aims to investigate inflammatory biomarkers in patients with non-dialysis CKD (ND-CKD) with and without stroke. METHODS: A propensity matched sample from > 3000 Salford Kidney Study (SKS) patients, differentiated by previous stroke at study recruitment, had stored plasma analyzed for interleukin- 6 (IL-6), Von Willebrand Factor (VWF) and C-reactive protein (CRP). Multivariable cox regression analysis investigated associations between inflammation and death, end-stage renal disease (ESRD) and future non-fatal cardiovascular events (NFCVE). RESULTS: A total of 157 previous stroke patients were compared against 162 non-stroke patients. There were no significant differences in inflammatory biomarkers between the two groups. Previous stroke was associated with greater mortality risk, hazard ratio (HR) (95% CI) was 1.45 (1.07-1.97). Higher inflammatory biomarker concentrations were independently associated with death but not ESRD or NFCVE in the total population. For each 1 standard deviation (SD) increase in log IL-6, VWF and CRP, the HR for all-cause mortality were 1.35 (1.10-1.70), 1.26 (1.05-1.51) and 1.34 (1.12-1.61), respectively. CRP retained its independent association (HR 1.47 (1.15-1.87)) with death in the stroke population. CONCLUSION: Previous stroke is an important determinant of mortality. However, the adverse combination of stroke and ND-CKD does not seem to be driven by higher levels of inflammation detected after the stroke event. Biomarkers of inflammation were associated with worse outcome in both stroke and non-stroke ND-CKD patients. TRIAL REGISTRATION: 15/NW/0818 .


Asunto(s)
Proteína C-Reactiva/análisis , Inflamación/sangre , Inflamación/etiología , Interleucina-6/sangre , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones , Factor de von Willebrand/análisis , Anciano , Biomarcadores/sangre , Femenino , Humanos , Masculino , Puntaje de Propensión
12.
Clin J Sport Med ; 32(4): 407-413, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852437

RESUMEN

ABSTRACT: A growing number of adventurous athletes are seeking new challenges through endurance events or physical activities held at high altitude (>2500 m). This coincides with a significant increase in the numbers of trekkers who ascend into the world's mountains. Altitude itself influences and complicates the athlete's effective and safe hydration. This article considers the physiology of adaptation to altitude and the effects on hydration at altitude compared with sea level, reviews the "ad libitum versus programmed hydration" controversy in conventional endurance event hydration, examines the evidence for extrapolation of sea level hydration strategies to the high-altitude environment, and synthesizes these disparate factors into a set of practical recommendations for hydration management during high-altitude physical activity. The guidelines will be relevant to participants of physical activity at altitude and health care staff who may care for them in the preparation or performance phases of their adventure.


Asunto(s)
Altitud , Resistencia Física , Aclimatación/fisiología , Atletas , Ejercicio Físico/fisiología , Humanos , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología
13.
Proc Natl Acad Sci U S A ; 115(28): 7404-7409, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29954866

RESUMEN

Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1ß production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1ß release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.


Asunto(s)
Antimaláricos/farmacología , Encéfalo/parasitología , Sistemas de Liberación de Medicamentos/métodos , Interleucina-33/metabolismo , Malaria Cerebral/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Plasmodium falciparum/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Hemoproteínas/metabolismo , Interleucina-1beta/biosíntesis , Interleucina-33/antagonistas & inhibidores , Macrófagos/metabolismo , Macrófagos/patología , Malaria Cerebral/metabolismo , Malaria Cerebral/patología , Malaria Falciparum/metabolismo , Malaria Falciparum/patología , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Transcriptoma/efectos de los fármacos
14.
Immunology ; 161(1): 39-52, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32445196

RESUMEN

Microglial inflammation driven by the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome contributes to brain disease and is a therapeutic target. Most mechanistic studies on NLRP3 activation use two-dimensional pure microglial cell culture systems. Here we studied the activation of the NLRP3 inflammasome in organotypic hippocampal slices, which allowed us to investigate microglial NLRP3 activation in a three-dimensional, complex tissue architecture. Toll-like receptor 2 and 4 activation primed microglial inflammasome responses in hippocampal slices by increasing NLRP3 and interleukin-1ß expression. Nigericin-induced NLRP3 inflammasome activation was dynamically visualized in microglia through ASC speck formation. Downstream caspase-1 activation, gasdermin D cleavage, pyroptotic cell death and interleukin-1ß release were also detected, and these findings were consistent when using different NLRP3 stimuli such as ATP and imiquimod. NLRP3 inflammasome pathway inhibitors were effective in organotypic hippocampal slices. Hence, we have highlighted organotypic hippocampal slice culture as a valuable ex vivo tool to allow the future study of NLRP3 inflammasomes in a representative tissue section, aiding the discovery of further mechanistic insights and drug development.


Asunto(s)
Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Antibacterianos/farmacología , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Nigericina/farmacología , Técnicas de Cultivo de Órganos , Proteínas de Unión a Fosfato/metabolismo
15.
Stroke ; 50(5): 1232-1239, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31009361

RESUMEN

Background and Purpose- A major process contributing to cell death in the ischemic brain is inflammation. Inflammasomes are multimolecular protein complexes that drive inflammation through activation of proinflammatory cytokines, such as IL (interleukin)-1ß. Preclinical evidence suggests that IL-1ß contributes to a worsening of ischemic brain injury. Methods- Using a mouse middle cerebral artery thrombosis model, we examined the inflammatory response after stroke and the contribution of the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome to ischemic injury. Results- There was a marked inflammatory response after stroke characterized by increased expression of proinflammatory cytokines and NLRP3 and by recruitment of leukocytes to the injured tissue. Targeting NLRP3 with the inhibitor MCC950, or using mice in which NLRP3 was knocked out, had no effect on the extent of injury caused by stroke. Conclusions- These data suggest that the NLRP3 pathway does not contribute to the inflammation exacerbating ischemic brain damage, contradicting several recent reports to the contrary.


Asunto(s)
Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Trombosis Intracraneal/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Accidente Cerebrovascular/metabolismo , Animales , Lesiones Encefálicas/patología , Isquemia Encefálica/patología , Furanos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos , Indenos , Inflamasomas/antagonistas & inhibidores , Inflamasomas/deficiencia , Trombosis Intracraneal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Accidente Cerebrovascular/patología , Sulfonamidas/farmacología , Sulfonas
16.
PLoS Pathog ; 13(3): e1006267, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273147

RESUMEN

The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.


Asunto(s)
Encéfalo/patología , Encéfalo/parasitología , Modelos Animales de Enfermedad , Malaria Cerebral/patología , Malaria Cerebral/parasitología , Animales , Eritrocitos/parasitología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Plasmodium berghei
17.
Brain Behav Immun ; 76: 126-138, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30453020

RESUMEN

The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.


Asunto(s)
Isquemia Encefálica/inmunología , Interleucina-1/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Inflamación/metabolismo , Interleucina-1/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal
18.
Alzheimers Dement ; 15(1): 158-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642436

RESUMEN

Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Biomarcadores , Enfermedades Vasculares/fisiopatología , Sustancia Blanca/patología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Humanos , National Institute on Aging (U.S.) , Estados Unidos
19.
Stroke ; 49(5): 1210-1216, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567761

RESUMEN

BACKGROUND AND PURPOSE: The proinflammatory cytokine IL-1 (interleukin-1) has a deleterious role in cerebral ischemia, which is attenuated by IL-1 receptor antagonist (IL-1Ra). IL-1 induces peripheral inflammatory mediators, such as interleukin-6, which are associated with worse prognosis after ischemic stroke. We investigated whether subcutaneous IL-1Ra reduces the peripheral inflammatory response in acute ischemic stroke. METHODS: SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) was a single-center, double-blind, randomized, placebo-controlled phase 2 trial of subcutaneous IL-1Ra (100 mg administered twice daily for 3 days) in patients presenting within 5 hours of ischemic stroke onset. Randomization was stratified for baseline National Institutes of Health Stroke Scale score and thrombolysis. Measurement of plasma interleukin-6 and other peripheral inflammatory markers was undertaken at 5 time points. The primary outcome was difference in concentration of log(interleukin-6) as area under the curve to day 3. Secondary outcomes included exploratory effect of IL-1Ra on 3-month outcome with the modified Rankin Scale. RESULTS: We recruited 80 patients (mean age, 72 years; median National Institutes of Health Stroke Scale, 12) of whom 73% received intravenous thrombolysis with alteplase. IL-1Ra significantly reduced plasma interleukin-6 (P<0.001) and plasma C-reactive protein (P<0.001). IL-1Ra was well tolerated with no safety concerns. Allocation to IL-1Ra was not associated with a favorable outcome on modified Rankin Scale: odds ratio (95% confidence interval)=0.67 (0.29-1.52), P=0.34. Exploratory mediation analysis suggested that IL-1Ra improved clinical outcome by reducing inflammation, but there was a statistically significant, alternative mechanism countering this benefit. CONCLUSIONS: IL-1Ra reduced plasma inflammatory markers which are known to be associated with worse clinical outcome in ischemic stroke. Subcutaneous IL-1Ra is safe and well tolerated. Further experimental studies are required to investigate efficacy and possible interactions of IL-1Ra with thrombolysis. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: ISRCTN74236229.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fibrinolíticos/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Isquemia Encefálica/inmunología , Proteína C-Reactiva/inmunología , Método Doble Ciego , Femenino , Humanos , Inflamación , Inyecciones Subcutáneas , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Accidente Cerebrovascular/inmunología , Terapia Trombolítica , Resultado del Tratamiento
20.
Immunology ; 154(2): 322-328, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29325217

RESUMEN

Neutrophils are key components of the innate immune response, providing host defence against infection and being recruited to non-microbial injury sites. Platelets act as a trigger for neutrophil extravasation to inflammatory sites but mechanisms and tissue-specific aspects of these interactions are currently unclear. Here, we use bacterial endotoxin in mice to trigger an innate inflammatory response in different tissues and measure neutrophil invasion with or without platelet reduction. We show that platelets are essential for neutrophil infiltration to the brain, peritoneum and skin. Neutrophil numbers do not rise above basal levels in the peritoneum and skin and are decreased (~60%) in the brain when platelet numbers are reduced. In contrast neutrophil infiltration in the lung is unaffected by platelet reduction, up-regulation of CXCL-1 (2·4-fold) and CCL5 (1·4-fold) acting as a compensatory mechanism in platelet-reduced mice during lung inflammation. In brain inflammation targeting platelet receptor GPIbα results in a significant decrease (44%) in platelet-mediated neutrophil invasion, while maintaining platelet numbers in the circulation. These results suggest that therapeutic blockade of platelet GPIbα could limit the harmful effects of excessive inflammation while minimizing haemorrhagic complications of platelet reduction in the brain. The data also demonstrate the ability to target damaging brain inflammation in stroke and related disorders without compromising lung immunity and hence risk of pneumonia, a major complication post stroke. In summary, our data reveal an important role for platelets in neutrophil infiltration to various tissues, including the brain, and so implicate platelets as a key, targetable component of cerebrovascular inflammatory disease or injury.


Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Encéfalo/patología , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/inmunología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA