Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1647-1657, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578274

RESUMEN

Long-term therapeutic outcomes of multiple sclerosis (MS) remain hindered by the chronic nature of immune cell stimulation toward self-antigens. Development of novel methods to target and deplete autoreactive T lymphocytes remains an attractive target for therapeutics for MS. We developed a programmed cell death 1 (PD-1)-targeted radiolabeled mAb and assessed its ability to deplete activated PD-1+ T lymphocytes in vitro and its ability to reduce disease burden of the myelin oligodendrocyte glycoprotein 35-55 experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice. We also investigated the upregulation of PD-1 on infiltrating lymphocytes in an animal model of MS. Finally, we demonstrate the (to our knowledge) first reported positron-emission tomography/computed tomography imaging of activated PD-1+ cells in the EAE animal model of MS. We found that the 177Lu radioisotope-labeled anti-PD-1 mAb demonstrated significant in vitro cytotoxicity toward activated CD4+PD-1+ T lymphocytes and led to significant reduction in overall disease progression in the EAE animal model. Our results show high expression of PD-1 on infiltrating lymphocytes in the spinal cords of EAE diseased animals. Positron-emission tomography/computed tomography imaging of the anti-PD-1 mAb demonstrated significant uptake in the cervical draining lymph nodes highlighting accumulation of activated lymphocytes. Targeted depletion of T lymphocytes using T cell activation markers such as PD-1 may present a novel method to reduce autoimmune attack and inflammation in autoimmune diseases such as MS. Development of multimodal nuclear theranostic agents may present the opportunity to monitor T cell activation via imaging radioisotopes and simultaneously treat MS using therapeutic radioisotopes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Activación de Linfocitos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Activación de Linfocitos/inmunología , Anticuerpos Monoclonales , Linfocitos T/inmunología , Femenino , Modelos Animales de Enfermedad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos
2.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570809

RESUMEN

Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R). IF3 was used in TRT to effectively inhibit tumor growth in osteosarcoma preclinical models. However, IF3's relatively short half-life in mice raised the need for improvement. We generated an Fc-engineered version of IF3, termed IF3δ, with amino acid substitutions known to enhance antibody half-life in human serum. In this study, we confirmed the specific binding of IF3δ to IGF2R with nanomolar affinity, similar to wild-type IF3. Additionally, IF3δ demonstrated binding to human and mouse neonatal Fc receptors (FcRn), indicating the potential for FcRn-mediated endocytosis and recycling. Biodistribution studies in mice showed a higher accumulation of IF3δ in the spleen and bone than wild-type IF3, likely attributed to abnormal spleen expression of IGF2R in mice. Therefore, the pharmacokinetics data from mouse xenograft models may not precisely reflect their behavior in canine and human patients. However, the findings suggest both IF3 and IF3δ as promising options for the RIT of osteosarcoma.


Asunto(s)
Osteosarcoma , Somatomedinas , Humanos , Ratones , Animales , Perros , Inmunoglobulina G , Distribución Tisular , Fragmentos Fc de Inmunoglobulinas/genética , Antígenos de Histocompatibilidad Clase I , Osteosarcoma/tratamiento farmacológico , Somatomedinas/metabolismo , Semivida
3.
Xenobiotica ; 52(8): 916-927, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36282181

RESUMEN

Aggregates of the protein α-synuclein are associated with pathophysiology of Parkinson's disease and are present in Lewy Bodies found in the brains of Parkinson's patients. We previously demonstrated that bifunctional compounds composed of caffeine linked via a six carbon chain to either 1-aminoindan (C8-6-I) or nicotine (C8-6-N) bind α-synuclein and protect yeast cells from α-synuclein mediated toxicity.A critical step in development of positron emission tomography (PET) probes for neurodegenerative diseases is evaluation of their metabolic stability. We determined that C8-6-I, and C8-6-N both undergo phase 1 P450 metabolism in mouse, rat, and human liver microsomes. We utilised this metabolic information to guide the design of fluorinated analogues for use as PET probes and determined that the fluorine in 19F-C8-6-I and 19F-C8-6-N is stable to P450 enzymes.We have developed and validated an analytical HPLC-UV method following FDA and EMA guidelines to measure in vitro phase 1 kinetics of these compounds and determine their Vmax, KM and CLint,u in mouse liver microsomes. We found that C8-6-I and 19F-C8-6-I have a two- to fourfold lower CLint,u than C8-6-N, and 19F-C8-6-N. Our approach shows a simple, specific, and effective system to design and develop compounds as PET probes.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , Ratas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cromatografía Líquida de Alta Presión , Cinética , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076924

RESUMEN

Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.


Asunto(s)
Melaninas , Melanoma , Animales , Inmunoterapia , Melanoma/radioterapia , Ratones , Radioinmunoterapia/métodos , Radioisótopos/uso terapéutico
5.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235126

RESUMEN

Objective: Positron emission tomography (PET) imaging is a powerful non-invasive method to determine the in vivo behavior of biomolecules. Determining biodistribution and pharmacokinetic (PK) properties of targeted therapeutics can enable a better understanding of in vivo drug mechanisms such as tumor uptake, off target accumulation and clearance. Zirconium-89 (89Zr) is a readily available tetravalent PET-enabling radiometal that has been used to evaluate the biodistribution and PK of monoclonal antibodies. In the current study, we performed in vitro and in vivo characterization of 89Zr-lintuzumab, a radiolabeled anti-CD33 antibody, as a model to evaluate the in vivo binding properties in preclinical models of AML. Methods: Lintuzumab was conjugated to p-SCN-Bn-deferoxamine (DFO) and labeled with 89Zr using a 5:1 µCi:µg specific activity at 37 °C for 1h. The biological activity of 89Zr-lintuzumab was evaluated in a panel of CD33 positive cells using flow cytometry. Fox Chase SCID mice were injected with 2 × 106 OCI-AML3 cells into the right flank. After 12 days, a cohort of mice (n = 4) were injected with 89Zr-lintuzumab via tail vein. PET/CT scans of mice were acquired on days 1, 2, 3 and 7 post 89Zr-lintuzumab injection. To demonstrate 89Zr-lintuzumab specific binding to CD33 expressing tumors in vivo, a blocking study was performed. This cohort of mice (n = 4) was injected with native lintuzumab and 24 h later 89Zr-lintuzumab was administered. This group was imaged 3 and 7 days after injection of 89Zr-lintuzumab. A full ex vivo biodistribution study on both cohorts was performed on day 7. The results from the PET image and ex vivo biodistribution studies were compared. Results: Lintuzumab was successfully radiolabeled with 89Zr resulting in a 99% radiochemical yield. The 89Zr-lintuzumab radioconjugate specifically binds CD33 positive cells in a similar manner to native lintuzumab as observed by flow cytometry. PET imaging revealed high accumulation of 89Zr-lintuzumab in OCI-AML3 tumors within 24h post-injection of the radioconjugate. The 89Zr-lintuzumab high tumor uptake remains for up to 7 days. Tumor analysis of the PET data using volume of interest (VOI) showed significant blocking of 89Zr-lintuzumab in the group pre-treated with native lintuzumab (pre-blocked group), thus indicating specific targeting of CD33 on OCI-AML3 cells in vivo. The tumor uptake findings from the PET imaging study are in agreement with those from the ex vivo biodistribution results. Conclusions: PET imaging of 89Zr-lintuzumab shows high specific uptake in CD33 positive human OCI-AML3 tumors. The results from the image study agree with the observations from the ex vivo biodistribution study. Our findings collectively suggest that PET imaging using 89Zr-lintuzumab could be a powerful drug development tool to evaluate binding properties of anti-CD33 monoclonal antibodies in preclinical cancer models.


Asunto(s)
Deferoxamina , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Deferoxamina/química , Deferoxamina/farmacología , Humanos , Ratones , Ratones SCID , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Circonio/química
6.
Xenobiotica ; 51(8): 885-900, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34187286

RESUMEN

A challenge in the development of novel 18F-labelled positron emission tomography (PET) imaging probes is identification of metabolically stable sites to incorporate the 18F radioisotope. Metabolic loss of 18F from PET probes in vivo can lead to misleading biodistribution data as displaced 18F can accumulate in various tissues.In this study we report on in vitro hepatic microsomal metabolism of novel caffeine containing bifunctional compounds (C8-6-I, C8-6-N, C8-6-C8) that can prevent in vitro aggregation of α-synuclein, which is associated with the pathophysiology of Parkinson's disease. The metabolic profile obtained guided us to synthesize stable isotope 19F-labelled analogues in which the fluorine was introduced at the metabolically stable N7 of the caffeine moiety.An in vitro hepatic microsomal metabolism study of the 19F-labelled analogues resulted in similar metabolites to the unlabelled compounds and demonstrated that the fluorine was metabolically stable, suggesting that these analogues are appropriate PET imaging probes. This straightforward in vitro strategy is valuable for avoiding costly stability failures when designing radiolabelled compounds for PET imaging.


Asunto(s)
Radioisótopos de Flúor , alfa-Sinucleína , Tomografía de Emisión de Positrones , Distribución Tisular
7.
Mol Pharm ; 17(2): 507-516, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841002

RESUMEN

Targeted strategies to deliver and retain drugs to kidneys are needed to improve drug accumulation and efficacy in a myriad of kidney diseases. These drug delivery systems show potential for improving the therapeutic windows of drugs acting in the kidney. Biodistribution of antibody-based therapeutics in vivo is governed by several factors including binding affinity, size, and valency. Investigations of how the biophysical and biochemical properties of biologics enable them to overcome biological barriers and reach kidneys are therefore of interest. Although renal accumulation of antibody fragments in cancer diagnostics and treatment has been observed, reports on effective delivery of antibody fragments to the kidneys remain scarce. Previously, we demonstrated that targeting plasmalemma vesicle-associated protein (PV1), a caveolae-associated protein, can promote accumulation of antibodies in both the lungs and the kidneys. Here, by fine-tuning the binding affinity of an antibody toward PV1, we observe that the anti-PV1 antibody with reduced binding affinity lost the capability for kidney targeting while retaining the lung targeting activity, suggesting that binding affinity is a critical factor for kidney targeting of the anti-PV1 antibody. We next use the antibody fragment F(ab')2 targeting PV1 to assess the dual effects of rapid kidney filtration and PV1 targeting on kidney-selective targeting. Ex vivo fluorescence imaging results demonstrated that after rapidly accumulating in kidneys at 4 h, PV1-targeted F(ab')2 was continually retained in the kidney at 24 h, whereas the isotype control F(ab')2 underwent urinary elimination with significantly reduced signaling in the kidney. Confocal imaging studies confirmed the localization of PV1-targeted F(ab')2 in the kidney. In addition, the monovalent antibody fragment (Fab-C4) lost the capability for kidney homing, indicating that the binding avidity of anti-PV1 F(ab')2 is important for kidney targeting. Our findings suggest that PV1-targeted F(ab')2 might be useful as a drug carrier for renal targeting and highlight the importance of affinity optimization for tissue targeting antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Caveolas/metabolismo , Portadores de Fármacos/farmacocinética , Fragmentos Fab de Inmunoglobulinas/inmunología , Riñón/efectos de los fármacos , Proteínas de la Membrana/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Afinidad de Anticuerpos , Portadores de Fármacos/administración & dosificación , Femenino , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Riñón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
8.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218169

RESUMEN

Melanoma incidence continues to rise, and while therapeutic approaches for early stage cases are effective, metastatic melanoma continues to be associated with high mortality. Immune checkpoint blockade (ICB) has demonstrated clinical success with approved drugs in cohorts of patients with metastatic melanoma and targeted radionuclide therapy strategies showed promise in several clinical trials against various cancers including metastatic melanoma. This led our group to investigate the combination of these two treatments which could be potentially offered to patients with metastatic melanoma not responsive to ICB alone. Previously, we have demonstrated that a combination of humanized anti-melanin antibody conjugated to 213Bismuth and anti-PD-1 ICB reduced tumor growth and increased survival in the Cloudman S91 murine melanoma DBA/2 mouse model. In the current study, we sought to improve the tumoricidal effect by using the long-lived radionuclides 177Lutetium and 225Actinium. Male Cloudman S91-bearing DBA/2 mice were treated intraperitoneally with PBS (Sham), unlabeled antibody to melanin, anti-PD-1 ICB, 177Lutetium or 225Actinium RIT, or a combination of ICB and RIT. Treatment with anti-PD-1 alone or low-dose 177Lutetium RIT alone resulted in modest tumor reduction, while their combination significantly reduced tumor growth and increased survival, suggesting synergy. 225Actinium RIT, alone or in combination with ICB, showed no therapeutic benefit, suggesting that the two radionuclides with different energetic properties work in distinct ways. We did not detect an increase in tumor-infiltrating T cells in the tumor microenvironment, which suggests the involvement of alternative mechanisms that improve the effect of combination therapy beyond that observed in the single therapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoconjugados/farmacología , Inmunoterapia/métodos , Melaninas/antagonistas & inhibidores , Melanoma Experimental/terapia , Radioinmunoterapia/métodos , Animales , Línea Celular Tumoral , Terapia Combinada , Humanos , Inmunoconjugados/inmunología , Masculino , Melaninas/inmunología , Melaninas/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos DBA , Análisis de Supervivencia , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
9.
Molecules ; 25(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784359

RESUMEN

Background: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with Blastomyces dermatitidis with 213Bi-labeled antibody 400-2 to (1→3)-ß-glucan. In this work, we performed a safety study of 213Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI. Methods: Three female beagle dogs (≈6.1 kg body weight) were treated intravenously with 155.3, 142.5, or 133.2 MBq of 213Bi-400-2 given as three subfractions over an 8 h period. RBC, WBC, platelet, and blood serum biochemistry parameters were measured periodically for 6 months post injection. Results: No significant acute or long-term side effects were observed after RIT injections; only a few parameters were mildly and transiently outside reference change value limits, and a transient atypical morphology was observed in the circulating lymphocyte population of two dogs. Conclusions: These results demonstrate the safety of systemic 213Bi-400-2 administration in dogs and provide encouragement to pursue evaluation of RIT of IFI in companion dogs.


Asunto(s)
Partículas alfa , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/química , Bismuto/química , Infecciones Fúngicas Invasoras/terapia , Radioinmunoterapia/efectos adversos , Radioisótopos/química , Seguridad , Animales , Anticuerpos Monoclonales/uso terapéutico , Blastomyces/inmunología , Blastomyces/fisiología , Perros , Infecciones Fúngicas Invasoras/inmunología , Ratones
10.
Bioconjug Chem ; 30(4): 1232-1243, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30912649

RESUMEN

Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoconjugados/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ensayo de Inmunoadsorción Enzimática , Femenino , Semivida , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Polietilenglicoles/química , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Neurosci ; 35(31): 10963-76, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245960

RESUMEN

The superficial layers of the medial entorhinal cortex (MEC) contain spatially selective neurons that are crucial for spatial navigation and memory. These highly specialized neurons include grid cells, border cells, head-direction cells, and irregular spatially selective cells. In addition, MEC neurons display a large variability in their spike patterns at a millisecond time scale. In this study, we analyzed spike trains of neurons in the MEC superficial layers of mice and found that these neurons can be classified into two groups based on their propensity to fire spike doublets at 125-250 Hz. The two groups, labeled "bursty" and "non-bursty" neurons, differed in their spike waveforms and interspike interval adaptation but displayed a similar mean firing rate. Grid cell spatial periodicity was more commonly observed in bursty than in non-bursty neurons. In contrast, most neurons with head-direction selectivity or those that fired at the border of the environment were non-bursty neurons. During theta oscillations, both bursty and non-bursty neurons fired preferentially near the end of the descending phase of the cycle, but the spikes of bursty neurons occurred at an earlier phase than those of non-bursty neurons. Finally, analysis of spike-time crosscorrelations between simultaneously recorded neurons suggested that the two cell classes are differentially coupled to fast-spiking interneurons: bursty neurons were twice as likely to have excitatory interactions with putative interneurons as non-bursty neurons. These results demonstrate that bursty and non-bursty neurons are differentially integrated in the MEC network and preferentially encode distinct spatial signals. SIGNIFICANCE STATEMENT: We report that neurons in the superficial layers of the medial entorhinal cortex can be classified based on their tendency to fire bursts of action potentials at 125-250 Hz. The relevance of this classification is demonstrated by the types of spatial information preferentially encoded by bursty and non-bursty neurons. Grid-like spatial periodicity is more commonly observed in bursty neurons, whereas most cells with head-direction selectivity or those that are firing at the border of the environment are non-bursty neurons. This work indicates that the spatial firing patterns of neurons in the medial entorhinal cortex can be predicted by electrophysiological features reflecting the synaptic inputs and/or integrating properties of the neurons.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Entorrinal/fisiología , Neuronas/fisiología , Animales , Mapeo Encefálico , Electrodos Implantados , Corteza Entorrinal/citología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Modelos Neurológicos , Neuronas/citología
12.
J Neurosci ; 34(18): 6245-59, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790195

RESUMEN

The hippocampus and the parahippocampal region have been proposed to contribute to path integration. Mice lacking GluA1-containing AMPA receptors (GluA1(-/-) mice) were previously shown to exhibit impaired hippocampal place cell selectivity. Here we investigated whether path integration performance and the activity of grid cells of the medial entorhinal cortex (MEC) are affected in these mice. We first tested GluA1(-/-) mice on a standard food-carrying homing task and found that they were impaired in processing idiothetic cues. To corroborate these findings, we developed an L-maze task that is less complex and is performed entirely in darkness, thereby reducing numerous confounding variables when testing path integration. Also in this task, the performance of GluA1(-/-) mice was impaired. Next, we performed in vivo recordings in the MEC of GluA1(-/-) mice. MEC neurons exhibited altered grid cell spatial periodicity and reduced spatial selectivity, whereas head direction tuning and speed modulation were not affected. The firing associations between pairs of neurons in GluA1(-/-) mice were stable, both in time and space, indicating that attractor states were still present despite the lack of grid periodicity. Together, these results support the hypothesis that spatial representations in the hippocampal-entorhinal network contribute to path integration.


Asunto(s)
Corteza Entorrinal/citología , Fenómenos de Retorno al Lugar Habitual/fisiología , Neuronas/fisiología , Periodicidad , Receptores AMPA/deficiencia , Conducta Espacial/fisiología , Estimulación Acústica , Potenciales de Acción/genética , Animales , Mapeo Encefálico , Análisis por Conglomerados , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Modelos Neurológicos , Vías Nerviosas/fisiología , Receptores AMPA/genética , Percepción Espacial/fisiología , Ritmo Teta , Factores de Tiempo
13.
Bioorg Med Chem ; 23(21): 7007-14, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26439661

RESUMEN

Nordihydroguaiaretic acid (NDGA) is a natural polyphenol with a broad spectrum of pharmacological properties. However, its usefulness is hindered by the lack of understanding of its pharmacological and toxicological pathways. Previously we showed that oxidative cyclisation of NDGA at physiological pH forms a dibenzocyclooctadiene that may have therapeutic benefits whilst oxidation to an ortho-quinone likely mediates toxicological properties. NDGA analogues with higher propensity to cyclise under physiologically relevant conditions might have pharmacological implications, which motivated this study. We synthesized a series of NDGA analogues which were designed to investigate the structural features which influence the intramolecular cyclisation process and help to understand the mechanism of NDGA's autoxidative conversion to a dibenzocyclooctadiene lignan. We determined the ability of the NDGA analogues investigated to form dibenzocyclooctadienes and evaluated the oxidative stability at pH 7.4 of the analogues and the stability of any dibenzocyclooctadienes formed from the NDGA analogues. We found among our group of analogues the catechols were less stable than phenols, a single catechol-substituted ring is insufficient to form a dibenzocyclooctadiene lignan, and only compounds possessing a di-catechol could form dibenzocyclooctadienes. This suggests that quinone formation may not be necessary for cyclisation to occur and the intramolecular cyclisation likely involves a radical-mediated rather than an electrophilic substitution process. We also determined that the catechol dibenzocyclooctadienes autoxidised at comparable rates to the parent catechol. This suggests that assigning in vitro biological activity to the NDGA dibenzocyclooctadiene is premature and requires additional study.


Asunto(s)
Antioxidantes/química , Masoprocol/análogos & derivados , Antioxidantes/síntesis química , Antioxidantes/metabolismo , Ciclización , Cinética , Masoprocol/síntesis química , Masoprocol/metabolismo , Oxidación-Reducción , Quinonas/química
15.
Food Microbiol ; 40: 81-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24549201

RESUMEN

Sixty-two strains of Listeria monocytogenes isolated in Canada and Switzerland were investigated. Comparison based on molecular genotypes confirmed that strains in these two countries are genetically diverse. Interestingly strains from both countries displayed similar range of cold growth phenotypic profiles. Based on cold growth lag phase duration periods displayed in BHI at 4 °C, the strains were similarly divided into groups of fast, intermediate and slow cold adaptors. Overall Swiss strains had faster exponential cold growth rates compared to Canadian strains. However gene expression analysis revealed no significant differences between fast and slow cold adapting strains in the ability to induce nine cold adaptation genes (lmo0501, cspA, cspD, gbuA, lmo0688, pgpH, sigB, sigH and sigL) in response to cold stress exposure. Neither was the presence of Stress survival islet 1 (SSI-1) analysed by PCR associated with enhanced cold adaptation. Phylogeny based on the sigL gene subdivided strains from these two countries into two major and one minor cluster. Fast cold adaptors were more frequently in one of the major clusters (cluster A), whereas slow cold adaptors were mainly in the other (cluster B). Genetic differences between these two major clusters are associated with various amino acid substitutions in the predicted SigL proteins. Compared to the EGDe type strain and most slow cold adaptors, most fast cold adaptors exhibited five identical amino acid substitutions (M90L, S203A/S203T, S304N, S315N, and I383T) in their SigL proteins. We hypothesize that these amino acid changes might be associated with SigL protein structural and functional changes that may promote differences in cold growth behaviour between L. monocytogenes strains.


Asunto(s)
Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/genética , Listeriosis/microbiología , Adaptación Fisiológica , Proteínas Bacterianas/genética , Canadá , Cadena Alimentaria , Microbiología de Alimentos , Abastecimiento de Alimentos , Humanos , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Filogenia , Suiza , Temperatura
16.
Nucl Med Biol ; 134-135: 108917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718557

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES: SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS: IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS: These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.


Asunto(s)
Actinio , Lutecio , Osteosarcoma , Radioisótopos , Microambiente Tumoral , Animales , Perros , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/diagnóstico por imagen , Ratones , Línea Celular Tumoral , Anticuerpos Monoclonales , Marcaje Isotópico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/patología , Neoplasias Óseas/inmunología
17.
J Neurosci ; 32(42): 14752-66, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23077060

RESUMEN

The activity of hippocampal pyramidal cells reflects both the current position of the animal and information related to its current behavior. Here we investigated whether single hippocampal neurons can encode several independent features defining trials during a memory task. We also tested whether task-related information is represented by partial remapping of the place cell population or, instead, via firing rate modulation of spatially stable place cells. To address these two questions, the activity of hippocampal neurons was recorded in rats performing a conditional discrimination task on a modified T-maze in which the identity of a food reward guided behavior. When the rat was on the central arm of the maze, the firing rate of pyramidal cells changed depending on two independent factors: (1) the identity of the food reward given to the animal and (2) the previous location of the animal on the maze. Importantly, some pyramidal cells encoded information relative to both factors. This trial-type specific and retrospective coding did not interfere with the spatial representation of the maze: hippocampal cells had stable place fields and their theta-phase precession profiles were unaltered during the task, indicating that trial-related information was encoded via rate remapping. During error trials, encoding of both trial-related information and spatial location was impaired. Finally, we found that pyramidal cells also encode trial-related information via rate remapping during the continuous version of the rewarded alternation task without delays. These results suggest that hippocampal neurons can encode several task-related cognitive aspects via rate remapping.


Asunto(s)
Potenciales de Acción/fisiología , Señales (Psicología) , Aprendizaje Discriminativo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Animales , Masculino , Plasticidad Neuronal/fisiología , Ratas , Ratas Long-Evans
18.
Appl Environ Microbiol ; 79(6): 1915-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23315746

RESUMEN

Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P < 0.0001) and were either as (FF19-1) or more (FE13-1) invasive than a clinical control strain (08-5578) (P = 0.006). To examine whether serotype 1/2a was more likely to acquire mutations than other serotypes, strains were plated on agar with rifampin, revealing 4b isolates to be significantly more mutable than 1/2a, 1/2c, and 3a serotypes (P = 0.0002). We also examined the ability of 33 strains to adapt to cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (<70 h), 39% were intermediate (70 to 200 h), and 15% were slow (>200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.


Asunto(s)
Adaptación Biológica , Proteínas Bacterianas/genética , Microbiología de Alimentos , Variación Genética , Listeria monocytogenes/genética , Colombia Británica , Células CACO-2 , Frío , ADN Bacteriano/química , ADN Bacteriano/genética , Células Epiteliales/microbiología , Humanos , Listeria monocytogenes/patogenicidad , Listeria monocytogenes/fisiología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
Appl Environ Microbiol ; 79(7): 2225-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354708

RESUMEN

Defensins are small antimicrobial peptides (AMPs) that play an important role in the innate immune system of mammals. Since the effect of mycotoxin contamination of food and feed on the secretion of intestinal AMPs is poorly understood, the aim of this study was to elucidate the individual and combined effects of four common Fusarium toxins, deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEA), and fumonisin B1 (FB1), on the mRNA expression, protein secretion, and corresponding antimicrobial effects of porcine ß-defensins 1 and 2 (pBD-1 and pBD-2) using a porcine jejunal epithelial cell line, IPEC-J2. In general, upregulation of pBD-1 and pBD-2 mRNA expression occurred following exposure to Fusarium toxins, individually and in mixtures (P < 0.05). However, no significant increase in secreted pBD-1 and pBD-2 protein levels was observed, as measured by enzyme-linked immunosorbent assay (ELISA). Supernatants from IPEC-J2 cells exposed to toxins, singly or in combination, however, possessed significantly less antimicrobial activity against Escherichia coli than untreated supernatants. When single toxins and two-toxin combinations were assessed, toxicity effects were shown to be nonadditive (including synergism, potentiation, and antagonism), suggesting interactive toxin effects when cells are exposed to mycotoxin combinations. The results show that Fusarium toxins, individually and in mixtures, activate distinct antimicrobial defense mechanisms possessing the potential to alter the intestinal microbiota through diminished antimicrobial effects. Moreover, by evaluating toxin mixtures, this improved understanding of toxin effects will enable more effective risk assessments for common mycotoxin combinations observed in contaminated food and feed.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Fusarium/metabolismo , Micotoxinas/metabolismo , beta-Defensinas/metabolismo , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Porcinos , Transcripción Genética
20.
Bioorg Med Chem ; 21(22): 7004-10, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24100156

RESUMEN

Post-translational modifications act as 'on' or 'off' switches causing downstream changes in gene transcription. Modifications such as trimethylation of lysine 27 on histone H3 (H3K27me3) cause repression of transcription and stable gene silencing, and its presence is associated with aggressive cancers of many types. We report here macrocyclic host-type compounds that can bind H3K27me3 preferentially over unmethylated H3K27, and characterize their binding affinities and selectivities using a convenient dye-displacement method. We also show that they can disrupt the protein-protein interaction of H3K27me3 with the chromobox homolog 7 (CBX7), a methyllysine reader protein, using fluorescence polarization. These results show that sub-micromolar potencies are achievable with this family of host compounds, and suggest the possibility of their use as new tools to induce the disruption of methyllysine-mediated protein-protein interactions and to report on lysine methylation in vitro.


Asunto(s)
Histonas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Receptores Artificiales/síntesis química , Calixarenos/síntesis química , Calixarenos/química , Calixarenos/metabolismo , Polarización de Fluorescencia , Histonas/química , Humanos , Cinética , Metilación , Fenoles/síntesis química , Fenoles/química , Fenoles/metabolismo , Complejo Represivo Polycomb 1/química , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Receptores Artificiales/química , Receptores Artificiales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA