Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(7): 1363-1376, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35793523

RESUMEN

Many low-molecular weight targeted radiotherapeutics (TRTs) are capable of rapidly achieving exceptional tumor to non-target ratios shortly after administration. However, the low tumor residence time of many TRTs limits therapeutic dose delivery and has become the Achilles heel to their clinical translation. To combat the tumor efflux of these otherwise promising agents, we have previously presented a strategy of equipping low-molecular weight TRTs with irreversible cysteine cathepsin inhibitors (e.g., E-64 analogues). These inhibitors are capable of forming irreversible adducts with cysteine proteases within the endolysosomal compartments of cells. Using these endolysosomal trapping agents (ETs), the receptor-targeted constructs are able to increase tumor retention and, thus, deliverable therapeutic doses. In this study, we examine this approach in the development of agents targeting the neurotensin receptor subtype 1 (NTSR1), a receptor overexpressed in numerous cancers. Using an antagonistic NTSR1-targeting vector, we explore the impact of charge modification of the ETs on the in vitro and in vivo biological performance of the constructs using HT-29 colon cancer models. Four ETs (based on the epoxysuccinyl peptide E-64) with various charge states were synthesized and incorporated into the structures of the NTSR1-targeted antagonist. These four 177Lu-labeled, ET-enhanced, NTSR1-targeted agents (177Lu-NA-ET1-4), along with the structurally analogous 177Lu-3BP-227, currently in clinical trials, underwent a battery of in vitro assays using HT-29 xenograft colon cancer cells to examine their NTSR1 binding, internalization and efflux, inhibition, and adduct formation properties. The biodistribution profile of these constructs was studied in an HT-29 mouse model. Charge modification of the terminal carboxylic acid and arginine of the ETs had deleterious effects on inhibition kinetics and in vitro adduct formation. Contrastingly, deletion of the arginine resulted in a modest increase in inhibition kinetics. Incorporation of ETs into the NTSR1-targeted agents was well-tolerated with minimal impact on the in vivo NTSR1 targeting but resulted in increased renal uptake. This study demonstrates that the ETs can be successfully incorporated into antagonistic NTSR1-targeted constructs without compromising their adduct formation capabilities. Based on these results, further exploration of the endolysosomal trapping approach is warranted in NTSR1- and other receptor-targeted antagonistic constructs.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Arginina/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Células HT29 , Humanos , Ratones , Receptores de Neurotensina/metabolismo , Distribución Tisular
2.
Genetics ; 209(1): 335-356, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567659

RESUMEN

The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for α-cells, and another specific for δ-cells. However, no single module enriched for ß-cell-specific transcripts, suggesting heterogeneity of gene expression patterns within the ß-cell population. A module enriched in transcripts associated with branched-chain amino acid metabolism was the most strongly correlated with physiological traits that reflect insulin resistance. Although the mice in this study were not overtly diabetic, the analysis of pancreatic islet gene expression under dietary-induced stress enabled us to identify correlated variation in groups of genes that are functionally linked to diabetes-associated physiological traits. Our analysis suggests an expected degree of concordance between diabetes-associated loci in the mouse and those found in human populations, and demonstrates how the mouse can provide evidence to support nominal associations found in human genome-wide association mapping.


Asunto(s)
Estudios de Asociación Genética , Islotes Pancreáticos/fisiología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Alelos , Animales , Biología Computacional/métodos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Células Secretoras de Glucagón/metabolismo , Haplotipos , Humanos , Ratones , Células Secretoras de Somatostatina/metabolismo , Transcriptoma , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA