Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Occup Environ Health ; 15(2): 122-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19496478

RESUMEN

The UC Berkeley Time-Activity Monitoring System (UCB-TAMS) was developed to measure time-activity in exposure studies. The system consists of small, light, inexpensive battery-operated 40-kHz ultrasound transmitters (tags) worn by participants and an ultrasound receiver (locator) attached to a datalogger fixed in an indoor location. Presence or absence of participants is monitored by distinguishing the unique ultrasound ID of each tag. Efficacy tests in rural households of highland Guatemala showed the system to be comparable to the gold-standard time-activity measure of direct observation by researchers, with an accuracy of predicting time-weighted averages of 90-95%, minute-by-minute accuracy of 80-85%, and sensitivity/specificity values of 86-89%/71-74% for one-minute readings on children 3-8 years-old. Additional controlled tests in modern buildings and in rural Guatemalan homes confirmed the performance of the system with the presence of other ultrasound sources, with multiple tags, covered by clothing, and in other non-ideal circumstances.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Ultrasonido , Contaminación del Aire Interior , Niño , Preescolar , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Reacciones Falso Negativas , Reacciones Falso Positivas , Femenino , Humanos , Masculino , Vigilancia de la Población/métodos , Análisis y Desempeño de Tareas
2.
Am J Public Health Res ; 2(6): 232-238, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25745633

RESUMEN

Real-time sensing and computing technologies are increasingly used in the delivery of real-time health behavior interventions. Auditory signals play a critical role in many of these interventions, impacting not only behavioral response but also treatment adherence and participant retention. Yet, few behavioral interventions that employ auditory feedback report the characteristics of sounds used and even fewer design signals specifically for their intervention. This paper describes a four-step process used in developing and selecting auditory warnings for a behavioral trial designed to reduce indoor secondhand smoke exposure. In step one, relevant information was gathered from ergonomic and behavioral science literature to assist a panel of research assistants in developing criteria for intervention-specific auditory feedback. In step two, multiple sounds were identified through internet searches and modified in accordance with the developed criteria, and two sounds were selected that best met those criteria. In step three, a survey was conducted among 64 persons from the primary sampling frame of the larger behavioral trial to compare the relative aversiveness of sounds, determine respondents' reported behavioral reactions to those signals, and assess participant's preference between sounds. In the final step, survey results were used to select the appropriate sound for auditory warnings. Ultimately, a single-tone pulse, 500 milliseconds (ms) in length that repeats every 270 ms for 3 cycles was chosen for the behavioral trial. The methods described herein represent one example of steps that can be followed to develop and select auditory feedback tailored for a given behavioral intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA