Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 50(2): 173-180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265062

RESUMEN

OBJECTIVES: Glimepiride Orodispersable Tablets (ODT) were prepared with the goal to have rapid onset of action and higher bioavailability with ease administration to individuals with swallowing difficulty to ameliorate patient compliance. SIGNIFICANCE: Glimepiride is a contemporary hypoglycemic medication that belongs to the family of sulfonylurea derivatives. It is used in type 2 diabetes mellitus. Compliance adherence remains one of the limitations with the conventional drug delivery system especially in pediatric, geriatric, psychiatric, and traveling patients, for such population ODT provides a good alternate dosage form compared with Commercial Tablets. METHOD: The Comparative in vivo pharmacokinetic parameters of the prepared ODT and conventional tablets (CT) were evaluated using an animal model. The plasma concentration of Glimepiride after oral administration of a single dose was determined at predetermined time intervals with HPLC. The pharmacokinetic parameters were calculated using PK Solutions 2.0 from Summit PK® software. RESULTS: The Cmax obtained with ODT (22.08 µg/ml) was significantly (p = 0.006) high, a lower tmax of 3.0 hr was achieved with the orodispersable formulation of the drug. The ODT showed 104.34% relative bioavailability as compared to CT and left shift of tmax as well. CONCLUSION: As per findings of the in vivo investigation, the Glimepiride ODT would be beneficial in terms of patient compliance, quick onset of action, and increased bioavailability.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Niño , Humanos , Conejos , Anciano , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Compuestos de Sulfonilurea/farmacocinética , Hipoglucemiantes , Comprimidos , Administración Oral
2.
Adv Mater ; 36(24): e2312939, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447161

RESUMEN

The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.


Asunto(s)
Nanopartículas , Humanos , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química
3.
Prog Mol Biol Transl Sci ; 204: 219-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38458739

RESUMEN

RNA therapeutics have emerged as potential treatments for genetic disorders, infectious diseases, and cancer. RNA delivery to target cells for efficient therapeutic applications remains challenging due to instability and poor uptake. Polymeric nanoparticulate delivery systems offer stability, protection, and controlled release. These systems shield RNA from degradation, enabling efficient uptake and extended circulation. Various polymeric nanoparticle platforms have been explored, including lipid-based nanoparticles, polymeric micelles, dendrimers, and polymer-drug conjugates. This review outlines recent breakthroughs of recent advances, design principles, characterization techniques, and performance evaluation of these delivery systems. It highlights their potential in translating preclinical studies into clinical applications. Additionally, the review discusses the application of polymeric nanoparticles in ophthalmic drug delivery, particularly for medications that dissolve poorly in water, and the progress made in siRNA-based therapies for viral infections, autoimmune diseases, and cancers. SiRNA holds great promise for precision medicine and therapeutic intervention, with the ability to target specific genes and modulate disease-associated pathways. The versatility and potency of siRNA-based drugs offer a broader scope for therapeutic intervention compared to traditional biological drugs. As research in RNA therapeutics continues to advance, these technologies hold tremendous potential to revolutionize the treatment of various diseases and improve patient outcomes.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , ARN Interferente Pequeño/uso terapéutico , ARN Interferente Pequeño/genética , Polímeros
4.
J Drug Target ; 32(4): 347-364, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38253594

RESUMEN

PRIMARY OBJECTIVE: The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING: The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME: Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION: Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.


Asunto(s)
Vasos Linfáticos , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Sistema Linfático/metabolismo , Neoplasias/metabolismo
5.
Drug Discov Today ; 29(9): 104114, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067612

RESUMEN

Three-dimensional (3D) cell culture techniques, which are superior to 2D methods in viability and functionality, are being used to develop innovative cancer vaccines. Tumor spheroids, which are structurally and functionally similar to actual tumors, can be developed using 3D cell culture. These spheroid vaccines have shown superior antitumor immune responses to 2D cell-based vaccines. Dendritic cell vaccines can also be produced more efficiently using 3D cell culture. Personalized cancer vaccines are being developed using 3D cell culture, providing substantial benefits over 2D methods. The more natural conditions of 3D cell culture might promote the expression of tumor antigens not expressed in 2D culture, potentially allowing for more targeted vaccines by co-culturing tumor cells with other cell types. Advanced cancer vaccines using 3D cell cultures are expected soon.

6.
Drug Discov Today ; 29(7): 104021, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750928

RESUMEN

The FDA has approved many nucleic acid (NA)-based products. The presence of charges and biological barriers however affect stability and restrict widespread use. The electrostatic complexation of peptide with polyethylene glycol-nucleic acids (PEG-NAs) via nonreducible and reducible agents lead to three parts at one platform.. The reducible linkage made detachment of siRNA from PEG easy compared with a nonreducible linkage. A peptide spider produces a small hydrodynamic particle size, which can improve drug release and pharmacokinetics. Several examples of peptide spiders that enhance stability, protection and transfection efficiency are discussed. Moreover, this review also covers the challenges, future perspectives and unmet needs of peptide-PEG-NAs conjugates for NAs delivery.


Asunto(s)
Ácidos Nucleicos , Péptidos , Humanos , Péptidos/química , Péptidos/administración & dosificación , Ácidos Nucleicos/administración & dosificación , Animales , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos , Arañas , ARN Interferente Pequeño/administración & dosificación
7.
Nanomicro Lett ; 16(1): 188, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698113

RESUMEN

As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.

8.
Nanomedicine (Lond) ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651634

RESUMEN

Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.

9.
ACS Omega ; 8(51): 48625-48649, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162753

RESUMEN

Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA