Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206964

RESUMEN

Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.


Asunto(s)
Populus/metabolismo , Metabolismo Secundario , Metaboloma , Estrés Fisiológico
2.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987184

RESUMEN

1-Deoxy-d-xylulose-5-phosphate synthase (DXS) is the rate-limiting enzyme in the plastidial methylerythritol phosphate pathway (MEP). In this study, PtDXS (XM_024607716.1) was isolated from Populus trichocarpa. A bioinformatics analysis revealed that PtDXS had high homology with the DXSs of other plant species. PtDXS expression differed among plant tissues and was highest in young leaves and lowest in roots. The recombinant protein was produced in Escherichia coli BL21 (DE3), purified, and its activity evaluated. The purified protein was capable of catalyzing the formation of 1-deoxy-d-xylulose-5-phosphate (DXP) from glyceraldehyde-3-phosphate and pyruvate. A functional color assay in E. coli harboring pAC-BETA indicated that PtDXS encodes a functional protein involved in the biosynthesis of isoprenoid precursors. The treatment of P. trichocarpa seedlings with 200 µM abscisic acid (ABA), 200 mM NaCl, 10% polyethylene glycol6000, and 2 mM H2O2 resulted in increased expression of PtDXS. The ABA and gibberellic acid contents of the transgenic lines (Poplar Nanlin 895) were higher than wild types, suggesting that DXS is important in terpenoid biosynthesis. Overexpression of PtDXS enhanced resistance to S. populiperda infection. Furthermore, the transgenic lines showed decreased feeding by Micromelalopha troglodyta, supporting the notion that PtDXS is a key enzyme in terpenoid biosynthesis.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/genética , Populus/fisiología , Estrés Fisiológico/genética , Animales , Ascomicetos/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mariposas Nocturnas/fisiología , Especificidad de Órganos/efectos de los fármacos , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente , Polietilenglicoles/farmacología , Populus/efectos de los fármacos , Populus/microbiología , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
3.
Plant Physiol Biochem ; 126: 22-31, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29494985

RESUMEN

Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation. We confirmed that the DRS1 gene was transformed into 'Nanlin895' poplar genomes using reverse transcription polymerase chain reaction (PCR), multiplex PCR, real-time PCR, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All transformed and wild-type (WT) plants were then transferred into a greenhouse for complementary experiments. We analyzed the physiological and biochemical responses of transgenic plants under drought and salt stresses in the greenhouse, and the results were compared with control WT plants. Responses to abiotic stress were greater in transgenic plants compared with WT. Based on our results, introduction of the DRS1 gene into poplar 'Nanlin895' plants significantly enhanced the resistance of those plants to water deficit and high salinity, allowing higher growth rates of roots and shoots in those plants. Additionally, the clawed root rate increased in transformed poplars grown in culture media or in soil, and improved survival under drought and salt stress conditions.


Asunto(s)
Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Populus/genética , Populus/crecimiento & desarrollo
4.
Plant Physiol Biochem ; 127: 64-73, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29549759

RESUMEN

Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA).


Asunto(s)
Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN , ADN de Plantas , Epigénesis Genética/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas , Populus , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Metilasas de Modificación del ADN/biosíntesis , Metilasas de Modificación del ADN/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Populus/genética , Populus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA