Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Med Genet A ; 188(4): 1075-1082, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918859

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy characterized by epileptic seizures, macrocephaly, and vacuolization of myelin and astrocyte. The magnetic resonance imaging of the brain of MLC patients shows diffuse white-matter anomalies and the occurrence of subcortical cysts. MLC features have been observed in individuals having mutations in the MLC1 or HEPACAM genes. In this study, we recruited a six generation large kindred with five affected individuals manifesting clinical features of epileptic seizures, macrocephaly, ataxia, and spasticity. In order to identify the underlying genetic cause of the clinical features, we performed whole-genome genotyping using Illumina microarray followed by detection of loss of heterozygosity (LOHs) regions. One affected individual was exome sequenced as well. Homozygosity mapping detected several LOH regions due to extensive consanguinity. An unbiased and hypothesis-free exome data analysis identified a homozygous missense variant (NM_015166.3:c.278C>T) in the exon 4 of the MLC1 gene. The variant is present in the LOH region on chromosome 22q (50 Mb) and segregates perfectly with the disorder within the family in an autosomal recessive manner. The variant is present in a highly conserved first cytoplasmic domain of the MLC1 protein (NM_015166.3:p.(Ser93Leu)). Interestingly, heterozygous individuals show seizure and mild motor function deterioration. We propose that the heterozygous variant in MLC1 might disrupt the functional interaction of MLC1 with GlialCAM resulting in mild clinical features in carriers of the variant.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Megalencefalia , Proteínas de Ciclo Celular/genética , Quistes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Convulsiones/genética
2.
J Gene Med ; 22(8): e3196, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32246862

RESUMEN

BACKGROUND: Progressive spastic ataxia is a heterogeneous disorder characterized by cerebellar ataxia and limb spasticity associated with other severe neurological complications. Spastic ataxia is classified into pure and complex types, inherited in both an autosomal recessive and autosomal dominant manner. It is caused by pathogenic variants in at least eight different genes, including NKX6-2 (MIM 607063) located on chromosome 10q26.3. The present study aimed to identify the genetic variant(s) underlying progressive spastic ataxia and to establish the genotype-phenotype correlation. METHODS: We collected a large consanguineous family having four affected individuals segregating progressive spastic ataxia in an autosomal recessive manner. To investigate the molecular cause of the disease, genomic DNA of three affected individuals underwent whole exome sequencing. RESULTS: All of the affected individuals showed progressive clinical features such as spastic ataxia, lower limb weakness and other mild neurological abnormalities. Whole exome sequencing data were analyzed using different filters. Filtering of rare and shared homozygous variants revealed a novel homozygous missense variant (c.545C>T; p.Ala182Val) in a highly conserved homeobox domain of the NKX6-2 protein. CONCLUSIONS: The findings of the present study add a novel variant to the NKX6-2 mutation spectrum and provide evidence that homozygous variants in the NKX6-2 cause progressive spastic ataxia associated with other abnormalities.


Asunto(s)
Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Mutación Missense , Atrofia Óptica/genética , Ataxias Espinocerebelosas/genética , Adolescente , Niño , Consanguinidad , Femenino , Genes Homeobox , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/diagnóstico , Extremidad Inferior/fisiopatología , Masculino , Espasticidad Muscular/diagnóstico , Atrofia Óptica/diagnóstico , Linaje , Ataxias Espinocerebelosas/diagnóstico , Secuenciación del Exoma
3.
Heliyon ; 10(14): e34506, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082035

RESUMEN

Melanoma antigen gene (MAGE) families are cancer-testis genes that normally show expression in the testes. However, their expressions have been linked with various types of human cancers, including BC. Therefore, the primary purposes of the present research were to assess the expression of MAGE-A, -B, and -C genes in Saudi female patients with BC and determine their regulation via the epigenetic mechanism. Ten BC samples were analyzed for the expression levels of nine MAGE-A genes, six MAGE-B genes, and three MAGE-C genes using the RT-PCR technique. All 18 evaluated genes except for MAGE-A1, -A3, -A4, and -B5 showed weak band expressions in some BC specimens. MAGE-A6 and -B2 were expressed in 40 % of the BC tissue samples, and MAGE-A9, -A10, and -B6 were expressed in 30 %. The lowest expression levels were found for MAGE-A11, -B1, -B3, -B4, -C1, and -C2 in 10 % of the BC specimens and for MAGE-A9,--B2, and --C3 in 20 % of the samples. The most frequently expressed gene was MAGE-A8 (found in 70 % of the BC samples), which suggests that it may serve as - a marker for screening of BC. In vitro treatment, the 5-aza-2'-deoxycytidine agent led to a significant rise in mRNA expressions for all tested genes related to the MAGE-A family, except for MAGE-A10. By contrast, among the genes in the MAGE-B and -C families, only MAGE-B1 and -C2 exhibited detectable mRNA expression levels after treatment.

4.
J Clin Med ; 13(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064292

RESUMEN

Background: Hypermanganesemia with dystonia 1 (HMNDYT1) is a rare genetic disorder characterized by elevated blood manganese levels. This condition is associated with polycythemia, motor neurodegeneration with extrapyramidal features, and hepatic dysfunction, which can progress to cirrhosis in some patients. Materials and Methods: In this study, a consanguineous Saudi family with two affected individuals exhibiting symptoms of severe motor impairment, spastic paraparesis, postural instability, and dystonia was studied. Clinical and radiographic evaluations were conducted on the affected individuals. Whole exome sequencing (WES) was performed to diagnose the disease and to determine the causative variant underlying the phenotype. Moreover, Sanger sequencing was used for validation and segregation analysis of the identified variant. Bioinformatics tools were utilized to predict the pathogenicity of candidate variants based on ACMG criteria. Results: Exome sequencing detected a recurrent homozygous missense variant (c.266T>C; p.L89P) in exon 1 of the SLC30A10 gene. Sanger sequencing was employed to validate the segregation of the discovered variant in all available family members. Bioinformatics tools predicted that the variant is potentially pathogenic. Moreover, conservation analysis showed that the variant is highly conserved in vertebrates. Conclusions: This study shows that exome sequencing is instrumental in diagnosing undiagnosed neurodevelopmental disorders. Moreover, this study expands the mutation spectrum of SLC30A10 in distinct populations.

5.
Biomedicines ; 11(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38001983

RESUMEN

BACKGROUND AND OBJECTIVES: Congenital myasthenic syndromes (CMSs) are rare inherited diseases characterized by muscle weakness and fatigability on exertion resulting from defects in the neuromuscular junctions. Mutations in 32 genes have been reported as the underlying causes of CMS, with mutations in the cholinergic receptor nicotinic epsilon subunit (CHRNE) being the most common cause of the disease. Methodology and Materials: This study investigated a large consanguineous family with multiple individuals suffering from abnormal fatigue and muscle weakness in the ocular and limb regions. Moreover, the affected individuals were followed up for 18 years to observe the clinical course of the disease. RESULTS: High-quality exome sequencing followed by bidirectional Sanger sequencing revealed a homozygous duplication variant (NM_000080.4: c.1220-8_1227dup) in the splice acceptor site of exon 11 of the CHRNE gene. This variant is predicted to cause frameshift and premature termination (p.Cys410ProfsTer51). Both parents had heterozygous duplication variants with no clinical symptoms. The personalized treatment of the affected individuals resulted in a marked improvement in the clinical symptoms. More than 80% of the disease symptoms in the affected individuals subsided after the use of pyridostigmine and salbutamol (4 mg). CONCLUSIONS: This is the first report of long-term follow up of cases with homozygous insertion (c.1220-8_1227dup) in the CHRNE gene. Furthermore, this report expands the phenotypic symptoms associated with the CHRNE mutation.

6.
Biomedicines ; 11(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893135

RESUMEN

Alport syndrome (AS) is a rare genetic disorder categorized by the progressive loss of kidney function, sensorineural hearing loss and eye abnormalities. It occurs due to mutations in three genes that encode for the alpha chains of type IV collagen. Globally, the disease is classified based on the pattern of inheritance into X-linked AS (XLAS), which is caused by pathogenic variants in COL4A5, representing 80% of AS. Autosomal recessive AS (ARAS), caused by mutations in either COL4A3 or COL4A4, represents 15% of AS. Autosomal dominant AS (ADAS) is rare and has been recorded in 5% of all cases due to mutations in COL4A3 or COL4A4. This review provides updated knowledge about AS including its clinical and genetic characteristics in addition to available therapies that only slow the progression of the disease. It also focuses on reported cases in Saudi Arabia and their prevalence. Moreover, we shed light on advances in genetic technologies like gene editing using CRISPR/Cas9 technology, the need for an early diagnosis of AS and managing the progression of the disease. Eventually, we provide a few recommendations for disease management, particularly in regions like Saudi Arabia where consanguineous marriages increase the risk.

7.
Int J Dev Neurosci ; 82(8): 789-805, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181241

RESUMEN

Neurodevelopmental disorders (NDDs) are heterogeneous genetic conditions of the central nervous system (CNS). Primary phenotypes of NDDs include epilepsy, loss of developmental skills, abnormal movements, muscle weakness, ocular anomalies, hearing problems, and macro- or microcephaly. NDDs occur due to variants in genes encoding proteins involved in the structure and function of CNS, thus interrupting its normal physiological role. In the study presented here, four consanguineous families (A-D), with members showing neurodevelopmental symptoms, were recruited for clinical and genetic characterization of the phenotypes. Clinical examinations, including Seguin Form Board Test (SFBT), Vineland Social Maturity Scale (VSMS), brain Magnetic Resonance Imaging (MRI), Electroencephalogram (EEG), Electromyography (EMG), Nerve Conduction Velocity (NCV), and Magnetic Resonance Spectroscopy, were employed to characterize the disease phenotypes. Whole exome sequencing (WES) followed by Sanger sequencing was employed to search for the genetic basis of the neurological symptoms observed in four families (A-D). Two of these families (A, B) were of Saudi Arabian origin, and two others (C, D) were of Pakistan origin. Two homozygous missense (KPTN: NM_007059.4:c.301T>G: NP_008990.2; p.(Phe101Val) and MINPP1:NM_001178118.2:c.1202G>A: NP_001171588.1; p.(Arg401Gln)) variants in families A and B, respectively, and two homozygous nonsense (NGLY1:NM_018297.3:c.1534_1541dup: NP_060767.2; p.(Ser515LysfsTer51) and AP4B1:NM_001253852:c.1668G>A: NP_001240781.1; p.(Trp556X)) variants in families C and D, respectively, were identified. Interestingly, additional heterozygous nonsense variant in SON: NM_138927.2: c.5753_5756del: NP_620305.3; p.(Val1918GlufsTer87) and a homozygous variant in FLG (FLG: NM_002016.2:c.7339C>T: NP_002007.1; p.(Arg2447X) were detected in families A and D, respectively. Further, we determined the deleteriousness of each variant through computational approaches. The present study expands the phenotypic and genetic spectrum of NDD-associated genes (KPTN, MINPP1, NGLY1, and AP4B1). Moreover, additional nonsense variants (SON: c.5753_5756del and FLG: c.7339C>T) identified in two families segregating with the phenotype might explain the phenotypic variability and severity in our patients.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Arabia Saudita , Fenotipo , Homocigoto , Secuenciación del Exoma , Trastornos del Neurodesarrollo/genética , Mutación/genética , Proteínas de Microfilamentos
8.
PLoS One ; 16(2): e0246607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571247

RESUMEN

Waardenburg syndrome (WS) is a hereditary disorder affecting the auditory system and pigmentation of hair, eyes, and skin. Different variants of the disease exist with the involvement of mutation in six genes. The aim of the study is to identify the genetic defects underlying Waardenburg syndrome in a large family with multiple affected individuals. Here, in this study, we recruited a large family with eleven affected individuals segregating WS type 2. We performed whole genome SNP genotyping, whole exome sequencing and segregation analysis using Sanger approach. Whole genome SNP genotyping, whole exome sequencing followed by Sanger validation of variants of interest identified a novel single nucleotide deletion mutation (c.965delA) in the MITF gene. Moreover, a rare heterozygous, missense damaging variant (c.101T>G; p.Val34Gly) in the C2orf74 has also been identified. The C2orf74 is an uncharacterized gene present in the linked region detected by DominantMapper. Variants in MITF and C2orf74 follows autosomal dominant segregation with the phenotype, however, the variant in C2orf74 is incompletely penetrant. We proposed a digenic inheritance of variants as an underlying cause of WS2 in this family.


Asunto(s)
Mutación del Sistema de Lectura , Factor de Transcripción Asociado a Microftalmía/genética , Mutación Missense , Sistemas de Lectura Abierta , Síndrome de Waardenburg/genética , Adolescente , Adulto , Segregación Cromosómica , Femenino , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
9.
Glob Med Genet ; 7(4): 109-112, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33693443

RESUMEN

Ehlers-Danlos syndrome (EDS) is a group of clinically and genetically heterogeneous disorder of soft connective tissues. The hallmark clinical features of the EDS are hyperextensible skin, hypermobile joints, and fragile vessels. It exhibits associated symptoms including contractures of muscles, kyphoscoliosis, spondylodysplasia, dermatosparaxis, periodontitis, and arthrochalasia. The aim of this study is to determine the exact subtype of EDS by molecular genetic testing in a family segregating EDS in an autosomal recessive manner. Herein, we describe a family with two individuals afflicted with EDS. Whole exome sequencing identified a homozygous missense mutation (c.2050G > A; p.Glu684Lys) in the COL1A1 gene in both affected individuals, although heterozygous variants in the COL1A1 are known to cause EDS. Recently, only one report showed homozygous variant as an underlying cause of the EDS in two Saudi families. This is the second report of a homozygous variant in the COL1A1 gene in a family of Saudi origin. Heterozygous carriers of COL1A1 variant are asymptomatic. Interestingly, the homozygous variant identified previously and the one identified in this study are same (c.2050G > A). The identification of a unique homozygous mutation (c.2050G > A) in three Saudi families argues in favor of a founder effect.

10.
Eur J Med Genet ; 62(2): 124-128, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29960047

RESUMEN

We recruited a family with an affected child exhibiting features of cleidocranial dysplasia with some phenotypic variations from reported cases. Whole exome sequencing data analysis identified an 18-bps heterozygous in-frame deletion variant (c.243-260delGGCGGCTGCGGCGGCGGC) in the RUNX2 gene. Sanger sequencing validated the presence of deletion in affected individual. Initially, we considered this variant as a causal mutation for the patient's phenotype based on previous report(s). However, further analysis of variant revealed that it is present in high frequency in variety of genome variation databases. Moreover, segregation analysis discovered the presence of variant in mother as well. Furthermore, screening of population matched control individuals revealed that the variant is present in apparently healthy individuals as well. Three-dimensional structures of the wild-type and mutant RUNX2 protein (p.Ala82_Ala87del) were analysed and it was found that both wild type and mutant protein show similar secondary structure pattern. Presence of RUNX2 deletion variant (c.243-260delGGCGGCTGCGGCGGCGGC) in control individuals, its high population frequency, benign effect on the overall protein structure lead to the argument that this variant is a population polymorphism and not a pathogenic mutation.


Asunto(s)
Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Eliminación de Gen , Frecuencia de los Genes , Polimorfismo Genético , Adulto , Displasia Cleidocraneal/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , Femenino , Humanos , Lactante , Masculino , Dominios Proteicos
11.
Genet Test Mol Biomarkers ; 23(5): 310-315, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30932712

RESUMEN

Objective:Heterozygous pathogenic variants in the COL2A1 gene result in several clinical features including impaired skeletal growth, ocular and otolaryngological abnormalities. Missense mutations in the triple helical region of the COL2A1 protein have been associated with lethal spondyloepiphyseal dysplasia (SED). In this study, we aimed to identify the underlying cause of a case of SED congenita (SEDC) in a 27-month-old child. Materials and Methods: A patient who was diagnosed initially with osteochondrodysplasia underwent a detailed clinical and radiological examination to obtain a conclusive diagnosis. The patient did not show any clinical features of hypochondrogenesis. Whole exome sequencing of the COL2A1 gene was carried out to identify the underlying genetic cause of the disorder. Results: Variant annotation and filtration detected a heterozygous missense mutation c.1357G>A (p.G453S) in the exon 21 of the COL2A1 gene of the proband which was confirmed by Sanger sequencing. Neither parent carried the mvariant suggesting this was a new mutation. Conclusion: The COL2A1 mutation (c.1357G>A), identified in this case, results in more mild phenotype than other missense mutations in exon 21 which are known to cause lethal hypochondrogenesis. We showed, for the first time, that a missense mutation (p.G453S) in the triple helical region of the alpha 1 (II) chain of the COL2A1 protein underlies SEDC and is not always lethal.


Asunto(s)
Colágeno Tipo II/genética , Osteocondrodisplasias/congénito , Colágeno Tipo II/fisiología , Femenino , Heterocigoto , Humanos , Lactante , Mutación , Mutación Missense/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatología , Arabia Saudita , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA