RESUMEN
The growing activity in the textile industry has been demanding the search for new and innovative technologies to meet consumers' needs regarding more sustainable and ecological processes, with functionality receiving more attention. Bee products are known for their wide spectra of properties, including antioxidant and antibacterial activities. Propolis and honey are the most popular and used since ancient times for the most diverse applications due to their health benefits. With the increasing need for safer and more sustainable practices, the use of natural products for the functional finishing process can be a suitable alternative due to their safety and eco-friendly nature. For that, a biosolution, composed of a mixture of propolis and honey in water, was used to perform the functional finishing of cotton knits, both in the presence and in the absence of potassium alum as a chemical mordant. The fastness strength was also evaluated after three washing cycles. The antioxidant potential of the biosolution, assessed with the in vitro ABTS scavenging assay, provided textiles with the capacity to reduce more than 90% of the ABTS radical, regardless of the mordant presence and even after three washing cycles. Furthermore, biofunctional textiles decreased the growth of Bacillus subtilis, Propionibacterium acnes, Escherichia coli, and, particularly, Staphylococcus aureus cultures after 24 h of incubation with an increase in antibacterial activity when potassium alum was used. These findings show that bee products are promising and effective alternatives to be used in the textile industry to confer antioxidant and antibacterial properties to cotton textiles, thereby enhancing human health.
Asunto(s)
Antibacterianos , Antioxidantes , Miel , Própolis , Própolis/química , Própolis/farmacología , Miel/análisis , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Textiles , Fibra de Algodón/análisis , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Compuestos de Alumbre/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrolloRESUMEN
Melanoma is the deadliest type of skin cancer, with about 61,000 deaths annually worldwide. Late diagnosis increases mortality rates due to melanoma's capacity to metastasise rapidly and patients' resistance to the available conventional therapies. Consequently, the interest in natural products as a strategy for drug discovery has been emerging. Propolis, a natural product produced by bees, has several biological properties, including anticancer effects. Propolis from Gerês is one of the most studied Portuguese propolis. Our group has previously demonstrated that an ethanol extract of Gerês propolis collected in 2018 (G18.EE) and its fractions (n-hexane, ethyl acetate, and n-butanol) decrease melanoma cell viability. Out of all the fractions, G18.EE-n-BuOH showed the highest potential as a melanoma pharmacological therapy. Thus, in this work, G18.EE-n-BuOH was fractioned into 17 subfractions whose effect was evaluated in A375 BRAF-mutated melanoma cells. The subfractions with the highest cytotoxic activity were analysed by UPLC-DAD-ESI/MSn in an attempt to understand which phenolic compounds could account for the anti-melanoma activity. The compounds identified are typical of the Gerês propolis, and some of them have already been linked with antitumor effectiveness. These results reaffirm that propolis compounds can be a source of new drugs and the isolation of compounds could allow its use in traditional medicine.
Asunto(s)
Antineoplásicos , Melanoma , Própolis , Neoplasias Cutáneas , Humanos , Própolis/farmacología , Portugal , Melanoma/tratamiento farmacológico , Antineoplásicos/farmacología , Fenoles/farmacologíaRESUMEN
The high incidence of skin diseases of microbial origin along with the widespread increase of microbial resistance demand for therapeutic alternatives. Research on natural compounds has been opening new perspectives for the development of new therapies with health-positive impacts. Propolis, a resinous mixture produced by honeybees from plant exudates, is widely used as a natural medicine since ancient times, mainly due to its antimicrobial properties. More recently, antioxidant, anti-tumour, anti-inflammatory, hepatoprotective and immunomodulatory activities were also reported for this natural product, highlighting its high potential pharmacological interest. In the present work, an extensive review of the main fungi causing skin diseases as well as the effects of natural compounds, particularly propolis, against such disease-causing micro-organisms was organized and compiled in concise handy tables. This information allows to conclude that propolis is a highly effective antimicrobial agent suggesting that it could be used as an alternative skin treatment against pathogenic micro-organisms and also as a cosmeceutical component or as a source of bioactive ingredients.
Asunto(s)
Antiinfecciosos , Ascomicetos , Própolis , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Própolis/farmacologíaRESUMEN
AIMS: Assess the antibacterial and antioxidant effects of ethanol extracts of Portuguese propolis samples when combined with gentamicin, a widely used aminoglycoside antibiotic, or with honey, collected from the same apiary as propolis. METHODS AND RESULTS: Using the agar dilution method and DPPH free radical scavenging assay, antimicrobial and antioxidant synergistic effects between propolis and gentamicin or honey were assessed. Synergism between propolis and gentamicin was observed for all the tested extracts and against all the indicator bacteria, with particular interest against the Methicillin-Resistant Staphylococcus aureus (MRSA) with a threefold decrease of the gentamicin MIC if mixed with 25 µg ml-1 propolis. Likely to propolis and gentamicin, mixtures of sub-MIC concentrations of propolis and honey enhanced the antibacterial action of each individual natural product against the majority of the strains. However, propolis antioxidant capacity decreased along with higher honey content in the mixture. CONCLUSIONS: Propolis has a strong synergistic effect when combined with gentamicin, allowing the reduction of the therapeutic dose of this drug. Propolis and honey mixtures also display a stronger antibacterial effect than the activity exhibited by each sample when tested individually, whereas the high antioxidant capacity of propolis seems to be not affected when in combination with honey. SIGNIFICANCE AND IMPACT OF STUDY: When mixed with honey, propolis antioxidant potential is maintained, or just slightly reduced up to 1:1 dilution, and show synergistic antibacterial effects, allowing to optimize the use of this usually scarce natural resource. Also, considering the antibiotic resistance problem, natural beehive products, alone or in the mixture, are promising alternatives to retard the outbreak of microbial resistance.
Asunto(s)
Miel , Staphylococcus aureus Resistente a Meticilina , Própolis , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Própolis/química , Própolis/farmacología , Staphylococcus aureusRESUMEN
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Asunto(s)
Aceites Volátiles , Zeolitas , Humanos , Aceites Volátiles/química , Pruebas de Sensibilidad MicrobianaRESUMEN
Propolis, a natural product made by bees with resins and balsams, is known for its complex chemical composition and remarkable bioactivities. In this study, propolis extraction was studied seeking extracts with strong bioactivities using less orthodox solvents, with some derived from apiary products. For that, a propolis sample collected from Gerês apiary in 2018 (G18) was extracted by maceration with six different solvents: absolute ethanol, ethanol/water (7:3), honey brandy, mead, propylene glycol and water. The solvent influence on the chemical composition and antioxidant and antimicrobial activities of the extracts was investigated. Antioxidant potential was assessed by the DPPH free-radical-scavenging assay and the antimicrobial activity by the agar dilution method. Chemical composition of the extracts was determined in vitro by three colorimetric assays: total ortho-diphenols, phenolics and flavonoids contents and the LC-MS technique. To our knowledge, this is the first time that solvents such as honey brandy and mead have been studied. Honey brandy showed considerable potential to extract propolis active compounds able to inhibit the growth of bacteria such as the methicillin-sensitive Staphylococcus aureus and Propionibacterium acnes (MIC values of 100 and 200 µg/mL, respectively) and the fungi Candida albicans and Saccharomyces cerevisiae (MIC = 500 µg/mL, for both). Mead extracts displayed high antioxidant capacity (EC50 = 1.63 ± 0.27 µg/mL) and great activity against resistant bacteria such as the methicillin-resistant Staphylococcus aureus and Escherichia coli (MIC = 750 µg/mL, for both). The production of such solvents made from beehive products further promotes a diversification of apiary products and the exploration of new applications using eco-friendly solutions.
Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Própolis , Própolis/farmacología , Própolis/química , Solventes , Antioxidantes/farmacología , Antioxidantes/química , Pruebas de Sensibilidad Microbiana , Candida albicans , Etanol/química , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , AguaRESUMEN
Melanoma is the most aggressive and life-threatening skin cancer type. The melanoma genome is the most frequently mutated, with the BRAF mutation present in 40-60% of melanoma cases. BRAF-mutated melanomas are characterized by a higher aggressiveness and progression. Adjuvant targeted treatments, such as BRAF and MEK inhibitors, are added to surgical excision in BRAF-mutated metastatic melanomas to maximize treatment effectiveness. However, resistance remains the major therapeutic problem. Interest in natural products, like propolis, for therapeutic applications, has increased in the last years. Propolis healing proprieties offer great potential for the development of novel cancer drugs. As the activity of Portuguese propolis has never been studied in melanoma, we evaluated the antitumoral activity of propolis from Gerês (G18.EE) and its fractions (n-hexane, ethyl acetate (EtOAc), and n-butanol) in A375 and WM9 melanoma cell lines. Results from DPPHâ¢/ABTS⢠radical scavenging assays indicated that the samples had relevant antioxidant activity, however, this was not confirmed in the cell models. G18.EE and its fractions decreased cell viability (SRB assay) and promoted ROS production (DHE/Mitotracker probes by flow cytometry), leading to activation of apoptotic signaling (expression of apoptosis markers). Our results suggest that the n-BuOH fraction has the potential to be explored in the pharmacological therapy of melanoma.
Asunto(s)
Melanoma , Própolis , Apoptosis , Línea Celular Tumoral , Humanos , Melanoma/patología , Portugal , Própolis/farmacología , Própolis/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Especies Reactivas de OxígenoRESUMEN
Renal cell carcinoma is the most lethal cancer of the urological system due to late diagnosis and treatment resistance. Propolis, a beehive product, is a valuable natural source of compounds with bioactivities and may be a beneficial addition to current anticancer treatments. A Portuguese propolis sample, its fractions (n-hexane, ethyl acetate, n-butanol and water) and three subfractions (P1-P3), were tested for their toxicity on A498, 786-O and Caki-2 renal cell carcinoma cell lines and the non-neoplastic HK2 kidney cells. The ethyl acetate fraction showed the strongest toxicity against A498 (IC50 = 0.162 µg mL-1) and 786-O (IC50 = 0.271 µg mL-1) cells. With similar toxicity against 786-O, P1 (IC50 = 3.8 µg mL-1) and P3 (IC50 = 3.1 µg mL-1) exhibited greater effect when combined (IC50 = 2.5 µg mL-1). Results support the potential of propolis and its constituents as promising coadjuvants in renal cell carcinoma treatment.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Própolis , Acetatos , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Riñón , Neoplasias Renales/tratamiento farmacológico , Extractos Vegetales , Portugal , Própolis/farmacologíaRESUMEN
Antimicrobial resistance (AMR) is one of humanity's main health problems today. Despite all the breakthroughs and research over the past few years, the number of microbial illnesses that are resistant to the available antibiotics is increasing at an alarming rate. In this article, we estimated the biomedical potential of Portuguese propolis harvested from the Gerês apiary over five years, evaluating the in vitro antimicrobial effect of five hydroalcoholic extracts prepared from five single propolis samples and of a hydroalcoholic extract obtained from the mixture of all samples. The antimicrobial potential was firstly assessed by determining the minimum inhibitory concentration (MIC) of these extracts against a panel of three Gram-positive (Bacillus subtilis, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and one Gram-negative bacteria (Escherichia coli), as well as two yeasts (Candida albicans and Saccharomyces cerevisiae). As MIC values against each bacterium were consistent across all the evaluated propolis extracts, we decided to further conduct a disk diffusion assay, which included three commercial antibiotics-erythromycin, vancomycin, and amoxicillin/clavulanic acid-for comparison purposes. In addition to displaying a concentration-dependent antibacterial effect, the hydroalcoholic extracts prepared with 70% ethanol exhibited stronger antimicrobial capacity than vancomycin against B. subtilis (% of increase ranged between 26 and 59%) and methicillin-sensitive S. aureus (% of increase ranged between 63 and 77%). Moreover, methicillin-resistant S. aureus (MRSA) showed susceptibility to the activity of the same extracts and resistance to all tested antibiotics. These findings support that propolis from Gerês is a promising natural product with promising antimicrobial activity, representing a very stimulating result considering the actual problem with AMR.
RESUMEN
Propolis, a bee product, is known for its variability of chemical and bioactive profiles. However, Portuguese propolis from Gerês, normally obtained by mixing propolis from three places-Bugalho, Felgueiras and Toutelo-has shown similar chemical and biological profiles over the years. Recently, a new propolis place-Roca-was added to the apiary to replace Bugalho, lost to the 2017 wildfires, hence questioning the previously claimed constancy of Gerês propolis. To unravel to what extent the beehive relocation affected this constancy, we studied different Gerês propolis samples collected in three consecutive years (2017-2019) composed of different combinations of source places. Two honey samples, collected before (2017) and after (2018) the occurrence of the wildfire, were also investigated. Total phenolics, flavonoids and ortho-diphenols contents were determined and the antioxidant and antimicrobial activities were evaluated, using the DPPH assay and the agar dilution method, respectively. Although both antimicrobial and antioxidant activities were generally in the ranges usually obtained from Gerês propolis, some variations were detected for the samples, with different compositions when compared to previous years. This work reinforces the importance of the consistency of a combination of several factors for the protection and preservation of the flora near the hives, providing bee products with more constant chemical and biological profiles over the years.
RESUMEN
Two independent artificial neural network (ANN) models were used to determine the optimal drug combination of zeolite-based delivery systems (ZDS) for cancer therapy. The systems were based on the NaY zeolite using silver (Ag+) and 5-fluorouracil (5-FU) as antimicrobial and antineoplastic agents. Different ZDS samples were prepared, and their characterization indicates the successful incorporation of both pharmacologically active species without any relevant changes to the zeolite structure. Silver acts as a counterion of the negative framework, and 5-FU retains its molecular integrity. The data from the A375 cell viability assays, involving ZDS samples (solid phase), 5-FU, and Ag+ aqueous solutions (liquid phase), were used to train two independent machine learning (ML) models. Both models exhibited a high level of accuracy in predicting the experimental cell viability results, allowing the development of a novel protocol for virtual cell viability assays. The findings suggest that the incorporation of both Ag and 5-FU into the zeolite structure significantly potentiates their anticancer activity when compared to that of the liquid phase. Additionally, two optimal AgY/5-FU@Y ratios were proposed to achieve the best cell viability outcomes. The ZDS also exhibited significant efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus); the predicted combination ratio is also effective against S. aureus, underscoring the potential of this approach as a therapeutic option for cancer-associated bacterial infections.
Asunto(s)
Melanoma , Zeolitas , Humanos , Plata/farmacología , Plata/química , Staphylococcus aureus , Zeolitas/química , Escherichia coli , Melanoma/tratamiento farmacológico , Fluorouracilo/farmacología , Antibacterianos/farmacología , Antibacterianos/químicaRESUMEN
BACKGROUND: Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS: Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS: All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION: Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Glucólisis/efectos de los fármacos , Extractos Vegetales/farmacología , Própolis/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/fisiopatología , Humanos , Extractos Vegetales/química , PortugalRESUMEN
Propolis is a resinous mixture produced by honeybees, mainly from plant exudates. With a rich chemical composition including many phenolic compounds, mostly responsible for its biological properties, namely antimicrobial ones, propolis may be a promising alternative to synthetic pesticides. The study of propolis from the south of Portugal and of its potential against phytopathogenic agents are still very recent and different methodological approaches hinder a comparison of efficacies. In this context, we aimed to test the value of a mathematical model for the multiparametric characterization of propolis' antifungal action on solid medium assays. An ethanol extract (EE) of a propolis sample harvested in 2016 from Alves (A16) was characterized in terms of phenolic composition and antimicrobial potential against five phytopathogenic species. A16.EE (500-2000 µg/mL) inhibited the mycelial growth of all the species, with Phytophthora cinnamomi and Biscogniauxia mediterranea being the most susceptible and Colletotrichum acutatum being the least affected. The Gompertz mathematical model proved to be a suitable tool for quantitatively describing the growth profiles of fungi and oomycetes, and its parameters exhibit a high level of discrimination. Our results reveal that propolis extracts may have potential applications beyond traditional uses, particularly within the agri-food sector, allowing beekeepers to make their businesses more profitable and diversified.
RESUMEN
Propolis, a natural resin created by bees, has garnered significant attention from both the scientific community and industry due to an impressive range of bioactivities. Nonetheless, the intrinsic variability in its chemical composition and bioactive profiles has been hindering propolis' full potential use. We previously showed that ethanol extracts (EEs) of a Portuguese propolis sample (Gerês) collected over four consecutive years displayed similar chemical and biological profiles, a constancy never documented before. However, the characteristics of the unprocessed samples of Gerês propolis were never described. Hence, the central objective of this study is to assess the quality parameters of unprocessed propolis samples collected from Gerês (G), over a four-year period (2019-2022), alongside the analysis of the chemical composition and bioactivities of the EEs prepared with the same raw samples. The ash, wax, balsam and water contents of the unprocessed samples-G19 to G22-showed minor fluctuations, likely attributed to uncontrollable natural events impacting the propolis source and collection process. On the other hand, the antimicrobial and antioxidant activities of all the four ethanol extracts (G19.EE-G22.EE) consistently align with prior studies. Furthermore, the Gerês propolis extracts showed remarkable uniformity in chemical composition parameters too, particularly concerning total polyphenol, flavonoid and ortho-diphenol contents. In summary, our research reinforces the beneficial properties of propolis and show that extracts' bioactivities remain within the reference ranges for Gerês propolis, despite minor differences in unprocessed samples, suggesting a consistent action over time. Thus, this work could be instrumental towards the establishment of standard parameters for propolis applications, offering valuable insights to this field of propolis research.
RESUMEN
Osteoarthritis (OA), a progressive degenerative disease of weight-bearing joints, is the second leading cause of disability in the world. Despite all the advances and research over the last years, none of the proposed strategies has been effective in generating functional and long-lasting tissue. Due to the high prevalence of OA and the urgent need for an effective and successful treatment, interest in natural products as anti-inflammatory agents, such as propolis and its components, has emerged. In this work, we estimate the biomedical potential of Portuguese propolis, evaluating the in vitro antioxidant and anti-inflammatory effects of single hydroalcoholic extracts prepared with propolis from Gerês sampled over a five-year period (2011-2015) (G.EE70 and G.EE35). The in vivo and in vitro anti-inflammatory potential of the hydroalcoholic extract of mixtures of the same samples (mG.EE70 and mG.EE35) was evaluated for the first time too. DPPH⢠radical scavenging and superoxide anion scavenging assays showed the strong antioxidant potential of both hydroalcoholic extracts, either prepared from single propolis samples or from the mixtures of the same samples. Results also revealed an anti-inflammatory effect of mG.EE35, both in vitro by inhibiting BSA denaturation and in vivo in the OA-induced model by improving mechanical hyperalgesia as well as the gait pattern parameters. Results further support the use of propolis blends as a better and more efficient approach to take full advantage of the bioactive potential of propolis.
RESUMEN
Global demand for safe, effective and natural products has been increasing in parallel with consumers' concerns about personal and environmental health. Propolis, a traditional and potentially medicinal product with several health benefits, is a beehive product with a worldwide reputation. However, despite the bioactivities reported, the low productivity and high chemical heterogeneity have been extensively hampering broader industrial uses. To assist in overcoming some of these problems, we prepared and characterized mixtures of ethanol extracts of a heterogeneous propolis sample (Pereiro) collected over a five-year period (2011-2015) and, additionally, we mixed two different propolis samples from distinct regions of Portugal (Pereiro and Gerês), also harvested at different times. An investigation of the antimicrobial and antioxidant properties, as well as characterization of the chemical composition of the eleven propolis blends were performed in this work. The antioxidant and antimicrobial activities of such blends of propolis samples, either from different localities and/or different years, were maintained, or even enhanced, when a comparison of the individual extracts was conducted. The differences in the chemical composition of the original propolis samples were also diluted in the mixtures. The results reemphasize the great potential of propolis and suggest that mixing different samples, regardless of provenance or harvesting date, can contribute to propolis standardization while simultaneously increasing its availability and adding value to this beehive byproduct.
RESUMEN
Natural products, like propolis, have been subject of interest by several industries mainly due to their biological activities. However, besides being produced in low amounts propolis has a great variability in terms of chemical composition and bioactivities' profiles, constituting a problem for the development of propolis-based products and for its acceptance by the medical community. The aim of this work relates to the study of the bioactivities, in particular the antioxidant and the antimicrobial properties, as well as the chemical characterization of Portuguese propolis samples collected in an apiary sited at Gerês (G) along four consecutive years. Ethanol extracts of the four propolis samples (G.EEs) display antimicrobial activity, especially against Gram-positive spore forming bacteria. Antioxidant activity, evaluated by three different in vitro assays, was confirmed in vivo by flow cytometry using Saccharomyces cerevisiae as eukaryotic cell model. Cells incubated with G.EEs prior to H2O2 incubation, or incubated with G.EEs and H2O2 simultaneously, display higher viability than cells incubated only with H2O2, suggesting that G.EEs protect yeast cells against induced oxidative stress. All tested propolis samples exhibit very similar antimicrobial and antioxidant activities. Chemical analysis of G.EEs revealed no significant differences in terms of phenolic profiles, namely in the compounds to which propolis bioactivities are ascribed, thus supporting the more constant behavior evidenced by these propolis samples. This work highlights the valuable properties of this bee product and reveals a constancy of bioactivities in a Portuguese propolis sample over four years, raising awareness to the potentialities of this natural product often regarded as a beekeeping waste.
Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/química , Própolis/química , Animales , Antibacterianos/farmacología , Antiinfecciosos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Abejas , Radicales Libres , Bacterias Grampositivas/efectos de los fármacos , Peróxido de Hidrógeno , Quelantes del Hierro , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo , Fenoles , Própolis/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Podcasts are digital files very popular in several and very distinct areas. In higher education, they have been explored in a multitude of ways mainly to support teaching and learning processes. The study here described focuses the integration of podcasts in Heredity and Evolution, a course from the Biology and Geology Degree Program at University of Minho, Portugal. It aimed to introduce podcasts in the teaching/learning context, to empirically study different dimensions of podcasting, and to evaluate students' acceptance and receptiveness to the pedagogical use of this technology. Five informative podcasts and three with feedback were produced and delivered. All the students listened to the audio files and considered the episodes audible and clear, their preference going to episodes of short or moderate length and containing summaries, study guidelines or syllabus contents. Students judged extremely valuable the integration of this technology in learning and showed receptiveness to podcasting in other courses. Curiously, in spite of owning mobile devices, students clearly favored the use of personal computers to listen to the podcasts. This student acceptance and openness to podcasting has been encouraging its pedagogical application in other teaching courses. The episodes produced often maintain the characteristics identified as the best by the students of this study but the pedagogical approach has been moving to a more student-centered learning situation, with students as podcasts producers. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):429-432, 2016.
Asunto(s)
Evolución Biológica , Biología/educación , Herencia , Difusión de la Información/métodos , Estudiantes/psicología , Enseñanza , Difusión por la Web como Asunto , Curriculum , Evaluación Educacional , HumanosRESUMEN
Cork presents a range of diverse and versatile properties making this material suitable for several and extremely diverse industrial applications. Despite the wide uses of cork, its antimicrobial properties and potential applications have deserved little attention from industry and the scientific community. Thus, the main purpose of this work was the evaluation of the antibacterial properties of cork, by comparison with commercially available antimicrobial materials (Ethylene-Vinyl Acetate copolymer and a currently used antimicrobial commercial additive (ACA)), following the previous development and optimization of a method for such antimicrobial assay. The AATCC 100-2004 standard method, a quantitative procedure developed for the assessment of antimicrobial properties in textile materials, was used as reference and optimized to assess cork antibacterial activity. Cork displayed high antibacterial activity against Staphylococcus aureus, with a bacterial reduction of almost 100% (96.93%) after 90 minutes of incubation, similar to the one obtained with ACA. A more reduced but time-constant antibacterial action was observed against Escherichia coli (36% reduction of the initial number of bacterial colonies). To complement this study, antibacterial activity was further evaluated for a water extract of cork and an MIC of 6 mg mL(-1) was obtained against the reference strain S. aureus.