Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500510

RESUMEN

Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated. Other isotherm models. As a compromise between the Freundlich and Langmuir isotherm models, such as the D-R isotherm and the Temkin isotherm, have been compared. The results indicated that the adsorption process followed the Freundlich isotherm model, indicating heterogeneous surface site energies and multi-layer levels of sorption. This study selected three linear kinetic models, namely pseudo-first order, pseudo-second order, and Elovich, to describe the MB sorption process using SPGMA negatively charged nanoparticles (430 nm). The obtained data revealed that the adsorption process obeyed the pseudo-second-order kinetic model, suggesting that the rate-limiting step in these sorption processes may be chemisorption. Furthermore, the thermodynamic parameters have been evaluated. Moreover, the interaction of the MB molecules with SPGMA nanoparticles has been simulated using the governing equation that describes ion exchange resin derived from Nernst-Plank equations between two ion species. Finally, the developed MB-SPGMA composite adsorbent (27 mg/g) wastested for the first time for the removal of Cr6+ ions and Mn7+ metal ions from dichromate and permanganate-contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminant.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Azul de Metileno , Compuestos Azo , Polímeros , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Cinética , Adsorción , Termodinámica , Alcanosulfonatos
2.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364462

RESUMEN

The arsenic (As) pollution of water has been eliminated via intensive scientific efforts, with the purpose of giving safe drinking water to millions of people across the world. In this study, the adsorption of As(V) from a synthetic aqueous solution was verified using a Bentonite-Anthracite@Zetag (BT-An@Zetag) composite. The SEM, FT-IR, XRD, DSC, TGA, and SBET techniques were used to characterize the (BT-An@Zetag) composite. The adsorption of As(V) was explored using batch adsorption under varied operating scenarios. Five kinetic modelswere used to investigate kinetic data, whereas three isotherms had been used to fit empirical equilibrium data. According to the findings, the adsorption mechanism of As(V) was best described by the Freundlich isotherm with a maximum monolayer coverage of 38.6 mg/g showing pseudo-second-order mode. The estimated enthalpy (H°) indicates that the adsorption process is both chemical and endothermic.The calculated free energy (G°) indicates that the reaction is nonspontaneous. After four sequential adsorption cycles, the produced BT-An@Zetag composite demonstrated good reusability and a greater adsorption affinity for As(V) ions. Overall, the BT-An@Zetag composite is suited for removing arsenic from wastewater using adsorption as a cost-effective and efficient technique.


Asunto(s)
Arsénico , Quitosano , Contaminantes Químicos del Agua , Humanos , Bentonita/química , Carbón Mineral , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Quitosano/química , Adsorción , Agua/química , Cinética , Termodinámica , Concentración de Iones de Hidrógeno
3.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36365665

RESUMEN

Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has been studied. Maximum MB content was correlated to the Polyglycidyl methacrylate content for both native and sulphonated copolymers. Furthermore, the effect of the adsorption conditions on the MB content was studied. Sulfonated Poly (glycidyl methacrylate; SPGMA) was the most efficient formed composite with the highest MB content. The developed composites' chemical structure and morphology were characterized using characterization tools such as particle size, FTIR, TGA, and SEM analyses. The developed MB-SPGMA composite adsorbent (27 mg/g), for the first time, was tested for the removal of Cr (VI) ions and Mn (VII) metal ions from dichromate and permanganate contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA