Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochim Biophys Acta ; 1838(6): 1628-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24412218

RESUMEN

The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Asunto(s)
Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Ácidos Oléicos/farmacología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Membrana Celular/metabolismo , Factores de Transcripción Forkhead/fisiología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Humanos , Membrana Dobles de Lípidos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Ratones Desnudos , Modelos Químicos , Simulación de Dinámica Molecular , Ácidos Oléicos/química , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Células Tumorales Cultivadas , Difracción de Rayos X
2.
J Pharmacol Exp Ther ; 354(2): 213-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26065701

RESUMEN

Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Trioleína/análogos & derivados , Trioleína/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Trioleína/química , Trioleína/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
J Lipid Res ; 54(5): 1457-65, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23471028

RESUMEN

The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor drug, involves the rapid and specific activation of sphingomyelin synthase (SMS), leading to a 4-fold increase in SM mass in tumor cells. In the present study, we investigated the source of the ceramides required to sustain this dramatic increase in SM. Through radioactive and fluorescent labeling, we demonstrated that sphingolipid metabolism was altered by a 24 h exposure to 2OHOA, and we observed a consistent increase in the number of lysosomes and the presence of unidentified storage materials in treated cells. Mass spectroscopy revealed that different sphingolipid classes accumulated in human glioma U118 cells after exposure to 2OHOA, demonstrating a specific effect on C16-, C20-, and C22-containing sphingolipids. Based on these findings, we propose that the demand for ceramides required to sustain the SMS activation (ca. 200-fold higher than the basal level) profoundly modifies both sphingolipid and phospholipid metabolism. As the treatment is prolonged, tumor cells fail to adequately metabolize sphingolipids, leading to a situation resembling sphingolipidosis, whereby cell viability is compromised.


Asunto(s)
Glioma/metabolismo , Ácidos Oléicos/farmacología , Esfingolipidosis/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ceramidas/metabolismo , Ceramidas/farmacología , Glioma/patología , Humanos , Esfingolipidosis/inducido químicamente , Esfingolipidosis/patología , Esfingolípidos/metabolismo
4.
Biomacromolecules ; 14(11): 4046-52, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24131254

RESUMEN

Here we report the development of polymeric nanoparticles, made of poly(lactide-co-glycolide) (PLGA) chemically modified with mannosamine (MN), intended to specifically interact with the intestinal mucosa and facilitate the intestinal transport of proteins. PLGA-MN nanoparticles displayed nanometric size and a negative zeta potential, which was lower than that of the PLGA nanoparticles. This correlate well with the preferential location of the MN group on the nanoparticles surface obtained by X-ray photoelectron spectroscope (XPS). The presence of MN groups in the polymer chain led to a different surface morphology noted by SEM, an increase of the encapsulation of model proteins, and to help stabilizing the nanoparticles in simulated intestinal fluids. Furthermore, the MN modification significantly enhanced the nanoparticle's interaction with the epithelial cells in human intestinal follicle-associated epithelium cell culture model. Overall, the MN modification significantly modifies the properties of PLGA nanoparticles making them more suitable as nanocarriers for oral protein delivery.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Hexosaminas/química , Nanopartículas/química , Poliglactina 910/química , Proteínas/administración & dosificación , Administración Oral , Células Cultivadas , Portadores de Fármacos/química , Células Epiteliales/química , Células Epiteliales/metabolismo , Hexosaminas/administración & dosificación , Humanos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Poliglactina 910/administración & dosificación , Proteínas/química , Propiedades de Superficie
5.
Oncotarget ; 10(26): 2486-2507, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-31069012

RESUMEN

The plasma membrane is an attractive target for new anticancer drugs, not least because regulating its lipid structure can control multiple signaling pathways involved in cancer cell proliferation, differentiation and survival. Accordingly, the novel anticancer drug hydroxytriolein (HTO) was designed to interact with and regulate the composition and structure of the membrane, which in turn controls the interaction of amphitropic signaling membrane proteins with the lipid bilayer. Changes in signaling provoked by HTO impair the growth of triple negative breast cancer (TNBC) cells, aggressive breast tumor cells that have a worse prognosis than other types of breast cancers and for which there is as yet no effective targeted therapy. HTO alters the lipid composition and structure of cancer cell membranes, inhibiting the growth of MDA-MB-231 and BT-549 TNBC cells in vitro. Depending on the cellular context, HTO could regulate two pathways involved in TNBC cell proliferation. On the one hand, HTO might stimulate ERK signaling and induce TNBC cell autophagy, while on the other, it could increase dihydroceramide and ceramide production, which would inhibit Akt independently of EGFR activation and provoke cell death. In vivo studies using a model of human TNBC show that HTO and its fatty acid constituent (2-hydroxyoleic acid) impair tumor growth, with no undesired side effects. For these reasons, HTO appears to be a promising anticancer molecule that targets the lipid bilayer (membrane-lipid therapy). By regulating membrane lipids, HTO controls important signaling pathways involved in cancer cell growth, the basis of its pharmacological efficacy and safety.

6.
Curr Top Med Chem ; 14(9): 1115-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24678710

RESUMEN

Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Lípidos/química , Nanocápsulas/química , Polietilenglicoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
J Control Release ; 118(3): 294-302, 2007 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-17292503

RESUMEN

M cells represent a potential portal for oral delivery of peptides and proteins due to their high endocytosis abilities. An in vitro model of human FAE (co-cultures) was used to evaluate the influence of M cells on the transport of free and encapsulated helodermin--a model peptide--across the intestinal epithelium. M cells enhanced transport of intact helodermin (18-fold, Papp=3 x 10(-6) cm s(-1)). As pegylation increased nanoparticle transport by M cells, helodermin was encapsulated in 200 nm nanoparticles containing PEG-b-PLA:PLGA 1:1. Stability of the selected formulation was demonstrated in simulated gastric and intestinal fluids. M cells increased the transport of helodermin encapsulated in these nanoparticles by a factor of 415, as compared to Caco-2 cells. Transport of free and encapsulated helodermin occurred most probably by endocytosis. In conclusion, M cells improved helodermin transport across the intestinal epithelium, confirming their high potential for oral delivery of peptides.


Asunto(s)
Mucosa Intestinal/metabolismo , Modelos Biológicos , Nanopartículas/administración & dosificación , Péptidos/administración & dosificación , Péptidos/farmacocinética , Células CACO-2 , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/efectos de la radiación , Mucosa Intestinal/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA