Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(26): 2436-2445, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-37921461

RESUMEN

BACKGROUND: An unmet need exists for focal segmental glomerulosclerosis (FSGS) treatment. In an 8-week, phase 2 trial, sparsentan, a dual endothelin-angiotensin receptor antagonist, reduced proteinuria in patients with FSGS. The efficacy and safety of longer-term treatment with sparsentan for FSGS are unknown. METHODS: In this phase 3 trial, we enrolled patients with FSGS (without known secondary causes) who were 8 to 75 years of age; patients were randomly assigned to receive sparsentan or irbesartan (active control) for 108 weeks. The surrogate efficacy end point assessed at the prespecified interim analysis at 36 weeks was the FSGS partial remission of proteinuria end point (defined as a urinary protein-to-creatinine ratio of ≤1.5 [with protein and creatinine both measured in grams] and a >40% reduction in the ratio from baseline). The primary efficacy end point was the estimated glomerular filtration rate (eGFR) slope at the time of the final analysis. The change in eGFR from baseline to 4 weeks after the end of treatment (week 112) was a secondary end point. Safety was also evaluated. RESULTS: A total of 371 patients underwent randomization: 184 were assigned to receive sparsentan and 187 to receive irbesartan. At 36 weeks, the percentage of patients with partial remission of proteinuria was 42.0% in the sparsentan group and 26.0% in the irbesartan group (P = 0.009), a response that was sustained through 108 weeks. At the time of the final analysis at week 108, there were no significant between-group differences in the eGFR slope; the between-group difference in total slope (day 1 to week 108) was 0.3 ml per minute per 1.73 m2 of body-surface area per year (95% confidence interval [CI], -1.7 to 2.4), and the between-group difference in the slope from week 6 to week 108 (i.e., chronic slope) was 0.9 ml per minute per 1.73 m2 per year (95% CI, -1.3 to 3.0). The mean change in eGFR from baseline to week 112 was -10.4 ml per minute per 1.73 m2 with sparsentan and -12.1 ml per minute per 1.73 m2 with irbesartan (difference, 1.8 ml per minute per 1.73 m2; 95% CI, -1.4 to 4.9). Sparsentan and irbesartan had similar safety profiles, and the frequency of adverse events was similar in the two groups. CONCLUSIONS: Among patients with FSGS, there were no significant between-group differences in eGFR slope at 108 weeks, despite a greater reduction in proteinuria with sparsentan than with irbesartan. (Funded by Travere Therapeutics; DUPLEX ClinicalTrials.gov number, NCT03493685.).


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Irbesartán , Proteinuria , Humanos , Biomarcadores , Creatinina , Tasa de Filtración Glomerular , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Irbesartán/administración & dosificación , Irbesartán/efectos adversos , Irbesartán/uso terapéutico , Proteinuria/tratamiento farmacológico , Proteinuria/etiología , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Inducción de Remisión
2.
Kidney Int ; 105(5): 929-931, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642992

RESUMEN

Little is known about what constitutes the dense deposits of dense deposit disease (DDD), apart from components of the complement pathway. This study presents the novel finding that large accumulations of apolipoprotein E are present in the deposits of DDD, as revealed by mass spectroscopy and confirmed by both confocal microscopy and immunohistochemistry. The findings suggest a new modality for diagnosis of DDD and introduce potential new mechanisms for understanding DDD pathophysiology.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Humanos , Glomerulonefritis Membranoproliferativa/metabolismo , Inmunohistoquímica , Biopsia
3.
Lancet ; 401(10388): 1584-1594, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37015244

RESUMEN

BACKGROUND: Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety. METHODS: PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥18 years) with biopsy-proven IgA nephropathy and proteinuria of 1·0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to <60 mL/min per 1·73 m2 and ≥60 mL/min per 1·73 m2) and urine protein excretion at screening (≤1·75 g/day and >1·75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850. FINDINGS: Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (-49·8%) than the irbesartan group (-15·1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0·59; 95% CI 0·51-0·69; p<0·0001). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups. INTERPRETATION: Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan. FUNDING: Travere Therapeutics.


Asunto(s)
Glomerulonefritis por IGA , Adulto , Humanos , Adolescente , Irbesartán/uso terapéutico , Glomerulonefritis por IGA/tratamiento farmacológico , Creatinina/orina , Proteinuria/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento
4.
Lancet ; 402(10417): 2077-2090, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-37931634

RESUMEN

BACKGROUND: Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis. METHODS: PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1·0 g per day despite maximised renin-angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), changes in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850. FINDINGS: Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White) . Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group. eGFR chronic 2-year slope (weeks 6-110) was -2·7 mL/min per 1·73 m2 per year versus -3·8 mL/min per 1·73 m2 per year (difference 1·1 mL/min per 1·73 m2 per year, 95% CI 0·1 to 2·1; p=0·037); total 2-year slope (day 1-week 110) was -2·9 mL/min per 1·73 m2 per year versus -3·9 mL/min per 1·73 m2 per year (difference 1·0 mL/min per 1·73 m2 per year, 95% CI -0·03 to 1·94; p=0·058). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group than in the irbesartan group (-42·8%, 95% CI -49·8 to -35·0, with sparsentan versus -4·4%, -15·8 to 8·7, with irbesartan; geometric least-squares mean ratio 0·60, 95% CI 0·50 to 0·72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0·7, 95% CI 0·4 to 1·2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals. INTERPRETATION: Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function. FUNDING: Travere Therapeutics.


Asunto(s)
Glomerulonefritis por IGA , Fallo Renal Crónico , Femenino , Humanos , Masculino , Antagonistas de Receptores de Angiotensina/efectos adversos , Método Doble Ciego , Glomerulonefritis por IGA/tratamiento farmacológico , Irbesartán/efectos adversos , Proteinuria/tratamiento farmacológico , Resultado del Tratamiento , Adulto
5.
Kidney Int ; 102(4): 694-696, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150761

RESUMEN

Current immunosuppression regimens for lupus nephritis are incompletely effective, placing patients at risk for poor long-term outcomes. This emphasizes the need to dissect pathogenic mechanisms in lupus nephritis, to inform the development of targeted therapies. In this issue of Kidney International, Parikh et al. performed transcriptomic analysis of pretreatment and posttreatment protocol kidney biopsies, segregated into glomerular and tubulointerstitial compartments, to identify candidate molecular pathways distinguishing treatment responders and nonresponders.


Asunto(s)
Nefritis Lúpica , Humanos , Riñón/patología , Glomérulos Renales/patología , Nefritis Lúpica/genética , Nefritis Lúpica/patología , Transcriptoma
6.
Kidney Int ; 101(5): 1017-1026, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227689

RESUMEN

Collapsing glomerulopathy is a histologically distinct variant of focal and segmental glomerulosclerosis that presents with heavy proteinuria and portends a poor prognosis. Collapsing glomerulopathy can be triggered by viral infections such as HIV or SARS-CoV-2. Transcriptional profiling of collapsing glomerulopathy lesions is difficult since only a few glomeruli may exhibit this histology within a kidney biopsy and the mechanisms driving this heterogeneity are unknown. Therefore, we used recently developed digital spatial profiling (DSP) technology which permits quantification of mRNA at the level of individual glomeruli. Using DSP, we profiled 1,852 transcripts in glomeruli isolated from formalin fixed paraffin embedded sections from HIV or SARS-CoV-2-infected patients with biopsy-confirmed collapsing glomerulopathy and used normal biopsy sections as controls. Even though glomeruli with collapsing features appeared histologically similar across both groups of patients by light microscopy, the increased resolution of DSP uncovered intra- and inter-patient heterogeneity in glomerular transcriptional profiles that were missed in early laser capture microdissection studies of pooled glomeruli. Focused validation using immunohistochemistry and RNA in situ hybridization showed good concordance with DSP results. Thus, DSP represents a powerful method to dissect transcriptional programs of pathologically discernible kidney lesions.


Asunto(s)
COVID-19 , Glomeruloesclerosis Focal y Segmentaria , Infecciones por VIH , Enfermedades Renales , Femenino , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/patología , Glomérulos Renales/patología , Masculino , SARS-CoV-2
7.
Kidney Int ; 102(2): 248-260, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661785

RESUMEN

Diabetic kidney disease has a high global disease burden and substantially increases the risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Humanos
8.
Eur J Immunol ; 51(9): 2225-2236, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146342

RESUMEN

Polymorphisms in TACI, a BAFF family cytokine receptor, are linked to diverse human immune disorders including common variable immunodeficiency (CVID) and systemic lupus erythematosus (SLE). Functional studies of individual variants show modest impacts on surface TACI expression and/or downstream signal transduction, indicating that relatively subtle variation in TACI activity can impact human B-cell biology. However, significant complexity underlies TACI biology, including both positive and negative regulation of physiologic and pathogenic B-cell responses. To model these contradictory events, we compared the functional impact of TACI deletion on separate models of murine SLE driven by T cell-independent and -dependent breaks in B-cell tolerance. First, we studied whether reduced surface TACI expression was sufficient to protect against progressive BAFF-mediated systemic autoimmunity. Strikingly, despite a relatively modest impact on surface TACI levels, TACI haploinsufficiency markedly reduced pathogenic RNA-associated autoantibody titers and conferred long-term protection from BAFF-driven lupus nephritis. In contrast, B cell-intrinsic TACI deletion exerted a limited impact of autoantibody generation in murine lupus characterized by spontaneous germinal center formation and T cell-dependent humoral autoimmunity. Together, these combined data provide new insights into TACI biology and highlight how TACI signals must be tightly regulated during protective and pathogenic B-cell responses.


Asunto(s)
Autoinmunidad/genética , Factor Activador de Células B/inmunología , Nefritis Lúpica/genética , Nefritis Lúpica/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Autoinmunidad/inmunología , Factor Activador de Células B/antagonistas & inhibidores , Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/genética , Linfocitos B/inmunología , Quimera , Femenino , Haploinsuficiencia/genética , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transducción de Señal/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/inmunología
9.
Am J Pathol ; 191(2): 222-227, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227297

RESUMEN

The severe acute respiratory syndrome coronavirus 2 pandemic has infected millions of individuals in the United States and caused hundreds of thousands of deaths. Direct infection of extrapulmonary tissues has been postulated, and using sensitive techniques, viral RNA has been detected in multiple organs in the body, including the kidney. However, direct infection of tissues outside of the lung has been more challenging to demonstrate. This has been in part due to misinterpretation of electron microscopy studies. In this perspective, we will discuss what is known about coronavirus infection, some of the basic ultrastructural cell biology that has been confused for coronavirus infection of cells, and rigorous criteria that should be used when identifying pathogens by electron microscopy.


Asunto(s)
COVID-19 , Infecciones por Coronavirus/virología , Microscopía Electrónica , SARS-CoV-2/patogenicidad , COVID-19/epidemiología , COVID-19/virología , Humanos , Pulmón/ultraestructura , Pulmón/virología , Microscopía Electrónica/métodos , Estados Unidos , Virosis
10.
Am J Kidney Dis ; 80(1): 119-131, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35125261

RESUMEN

The kidney biopsy is an essential tool for diagnosis of many kidney diseases. Obtaining an adequate biopsy sample with appropriate allocation for various studies is essential. Nephrologists should understand key lesions and their interpretation because these are essential elements underlying optimal approaches for interventions. This installment in the AJKD Core Curriculum in Nephrology will review these topics. We will first briefly discuss considerations for allocation and processing of kidney biopsies. We will then present in outline form the differential diagnoses of a spectrum of patterns of injury and consideration for interpretation of specific lesions. Lesions are presented according to anatomic site as glomerular, vascular, or tubulointerstitial. Native and transplant kidney biopsy lesions are included. These lesions and differential diagnoses and specific diseases are then linked to detailed clinicopathologic discussion of specific diseases presented in the AJKD Atlas of Kidney Pathology II. Correlation with immunofluorescence, electron microscopy, and clinical findings are emphasized to reach a differential diagnosis and the final diagnosis.


Asunto(s)
Enfermedades Renales , Biopsia , Curriculum , Humanos , Riñón/patología , Enfermedades Renales/diagnóstico , Enfermedades Renales/patología , Glomérulos Renales/patología
11.
Nephrol Dial Transplant ; 37(5): 847-859, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-34865099

RESUMEN

BACKGROUND: The sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin lowers blood glucose via reduced tubular reabsorption of filtered glucose and is an important new therapy for diabetic nephropathy (DN). This study tested whether treatment with empagliflozin would ameliorate proteinuria and the pathologic alterations of DN including podocyte number and integrity in the leptin-deficient BTBR ob/ob mouse model of DN. METHODS: Study cohorts included wild-type (WT) BTBR mice, untreated diabetic BTBR ob/ob mice and mice treated with empagliflozin for 6 weeks after development of established DN at 18 weeks of age. RESULTS: Hyperglycemia, proteinuria, serum creatinine, accumulation of mesangial matrix and the extent of mesangiolysis were reversed with empagliflozin treatment. Treatment with empagliflozin resulted in an increased podocyte number and podocyte density, improvement in the degree of podocyte foot process effacement and parietal epithelial cell activation. SGLT2 inhibition reduced renal oxidative stress, measured by urinary excretion of markers of RNA/DNA damage and in situ demonstration of decreased carbonyl oxidation. There was no discernable difference in accumulations of advanced glycation end-products by immunohistochemistry. CONCLUSION: The structural improvements seen in BTBR ob/ob mice treated with empagliflozin provide insights into potential long-term benefits for humans with DN, for whom there is no comparable biopsy information to identify structural changes effected by SGLT2 inhibition. The findings suggest SGLT2 inhibition may ameliorate DN through glucose lowering-dependent and -independent mechanisms that lead to podocyte restoration and delay or reversal of disease progress.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus , Nefropatías Diabéticas , Glucósidos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/uso terapéutico , Glucemia , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Glucósidos/uso terapéutico , Ratones , Ratones Endogámicos , Proteinuria , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
12.
J Immunol ; 204(10): 2627-2640, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32238460

RESUMEN

Lupus nephritis (LN) is a major contributor to morbidity and mortality in lupus patients, but the mechanisms of kidney damage remain unclear. In this study, we introduce, to our knowledge, novel models of LN designed to resemble the polygenic nature of human lupus by embodying three key genetic alterations: the Sle1 interval leading to anti-chromatin autoantibodies; Mfge8-/- , leading to defective clearance of apoptotic cells; and either C1q-/- or C3-/- , leading to low complement levels. We report that proliferative glomerulonephritis arose only in the presence of all three abnormalities (i.e., in Sle1.Mfge8 -/- C1q -/- and Sle1.Mfge8 -/- C3 -/- triple-mutant [TM] strains [C1q -/-TM and C3-/- TM, respectively]), with structural kidney changes resembling those in LN patients. Unexpectedly, both TM strains had significant increases in autoantibody titers, Ag spread, and IgG deposition in the kidneys. Despite the early complement component deficiencies, we observed assembly of the pathogenic terminal complement membrane attack complex in both TM strains. In C1q-/- TM mice, colocalization of MASP-2 and C3 in both the glomeruli and tubules indicated that the lectin pathway likely contributed to complement activation and tissue injury in this strain. Interestingly, enhanced thrombin activation in C3-/- TM mice and reduction of kidney injury following attenuation of thrombin generation by argatroban in a serum-transfer nephrotoxic model identified thrombin as a surrogate pathway for complement activation in C3-deficient mice. These novel mouse models of human lupus inform the requirements for nephritis and provide targets for intervention.


Asunto(s)
Enfermedades por Deficiencia de Complemento Hereditario/genética , Riñón/patología , Nefritis Lúpica/inmunología , Animales , Anticuerpos Antinucleares/sangre , Antígenos de Superficie/genética , Activación de Complemento , Complemento C1q/genética , Complemento C3/genética , Modelos Animales de Enfermedad , Glomerulonefritis , Enfermedades por Deficiencia de Complemento Hereditario/inmunología , Humanos , Nefritis Lúpica/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Leche/genética , Herencia Multifactorial
13.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197228

RESUMEN

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Asunto(s)
Guías como Asunto , Riñón/patología , Medicina de Precisión , Biopsia , Humanos , Reproducibilidad de los Resultados
14.
Lab Invest ; 101(7): 935-941, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33911188

RESUMEN

The etiology of diabetic nephropathy in type 2 diabetes is multifactorial. Sustained hyperglycemia is a major contributor, but additional contributions come from the hypertension, obesity, and hyperlipidemia that are also commonly present in patients with type 2 diabetes and nephropathy. The leptin deficient BTBR ob/ob mouse is a model of type 2 diabetic nephropathy in which hyperglycemia, obesity, and hyperlipidemia, but not hypertension, are present. We have shown that reversal of the constellation of these metabolic abnormalities with leptin replacement can reverse the morphologic and functional manifestations of diabetic nephropathy. Here we tested the hypothesis that reversal specifically of the hypertriglyceridemia, using an antisense oligonucleotide directed against ApoC-III, an apolipoprotein that regulates the interactions of VLDL (very low density lipoproteins) with the LDL receptor, is sufficient to ameliorate the nephropathy of Type 2 diabetes. Antisense treatment resulted in reduction of circulating ApoC-III protein levels and resulted in substantial lowering of triglycerides to near-normal levels in diabetic mice versus controls. Antisense treatment did not ameliorate proteinuria or pathologic manifestations of diabetic nephropathy, including podocyte loss. These studies indicate that pathologic manifestations of diabetic nephropathy are unlikely to be reduced by lipid-lowering therapeutics alone, but does not preclude a role for such interventions to be used in conjunction with other therapeutics commonly employed in the treatment of diabetes and its complications.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Hipertrigliceridemia/metabolismo , Animales , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Diabetes Mellitus Experimental/metabolismo , Femenino , Leptina/genética , Masculino , Ratones , Ratones Obesos , Oligonucleótidos Antisentido , Podocitos/metabolismo , Podocitos/patología
15.
Kidney Int ; 99(3): 498-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33637194

RESUMEN

Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Adulto , Humanos , Riñón , Medicina de Precisión , Estudios Prospectivos , Proteómica , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
16.
Am J Kidney Dis ; 77(1): 82-93.e1, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045255

RESUMEN

RATIONALE & OBJECTIVE: Kidney biopsy data inform us about pathologic processes associated with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a multicenter evaluation of kidney biopsy findings in living patients to identify various kidney disease pathology findings in patients with coronavirus disease 2019 (COVID-19) and their association with SARS-CoV-2 infection. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: We identified 14 native and 3 transplant kidney biopsies performed for cause in patients with documented recent or concurrent SARS-CoV-2 infection treated at 7 large hospital systems in the United States. OBSERVATIONS: Men and women were equally represented in this case series, with a higher proportion of Black (n=8) and Hispanic (n=5) patients. All 17 patients had SARS-CoV-2 infection confirmed by reverse transcriptase-polymerase chain reaction, but only 3 presented with severe COVID-19 symptoms. Acute kidney injury (n=15) and proteinuria (n=11) were the most common indications for biopsy and these symptoms developed concurrently or within 1 week of COVID-19 symptoms in all patients. Acute tubular injury (n=14), collapsing glomerulopathy (n=7), and endothelial injury/thrombotic microangiopathy (n=6) were the most common histologic findings. 2 of the 3 transplant recipients developed active antibody-mediated rejection weeks after COVID-19. 8 patients required dialysis, but others improved with conservative management. LIMITATIONS: Small study size and short clinical follow-up. CONCLUSIONS: Cases of even symptomatically mild COVID-19 were accompanied by acute kidney injury and/or heavy proteinuria that prompted a diagnostic kidney biopsy. Although acute tubular injury was seen among most of them, uncommon pathology such as collapsing glomerulopathy and acute endothelial injury were detected, and most of these patients progressed to irreversible kidney injury and dialysis.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , COVID-19/complicaciones , COVID-19/patología , Proteinuria/etiología , Proteinuria/patología , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Humanos , Riñón/patología , Masculino , Persona de Mediana Edad
17.
Am J Physiol Renal Physiol ; 318(5): F1295-F1305, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32249614

RESUMEN

Podocyte loss and proteinuria are both key features of human diabetic nephropathy (DN). The leptin-deficient BTBR mouse strain with the ob/ob mutation develops progressive weight gain, type 2 diabetes, and diabetic nephropathy that has many features of advanced human DN, including increased mesangial matrix, mesangiolysis, podocyte loss, and proteinuria. Selective antagonism of the endothelin-1 type A receptor (ETAR) by atrasentan treatment in combination with renin-angiotensin-aldosterone system inhibition with losartan has been shown to have the therapeutic benefit of lowering proteinuria in patients with DN, but the underlying mechanism for this benefit is not well understood. Using a similar therapeutic approach in diabetic BTBR ob/ob mice, this treatment regimen significantly increased glomerular podocyte number compared with diabetic BTBR ob/ob controls and suggested that parietal epithelial cells were a source for podocyte restoration. Atrasentan treatment alone also increased podocyte number but to a lesser degree. Mice treated with atrasentan demonstrated a reduction in proteinuria, matching the functional improvement reported in humans. This is a first demonstration that treatment with the highly selective ETAR antagonist atrasentan can lead to restoration of the diminished podocyte number characteristic of DN in humans and thereby underlies the reduction in proteinuria in patients with diabetes undergoing similar treatment. The benefit of ETAR antagonism in DN extended to a decrease in mesangial matrix as measured by a reduction in accumulations of collagen type IV in both the atrasentan and atrasentan + losartan-treated groups compared with untreated controls.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Atrasentán/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Antagonistas de los Receptores de la Endotelina A/farmacología , Losartán/farmacología , Podocitos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Ratones , Fosforilación , Podocitos/metabolismo , Podocitos/patología , Proteinuria/metabolismo , Proteinuria/patología , Proteinuria/prevención & control , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
18.
Am J Physiol Renal Physiol ; 318(3): F763-F771, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961715

RESUMEN

There is a need for improved animal models that better translate to human kidney disease to predict outcome of pharmacological effects in the patient. The diabetic BTBRob/ob mouse model mimics key features of early diabetic nephropathy in humans, but with chronic injury limited to glomeruli. To explore if we could induce an accelerated and more advanced disease phenotype that closer translates to human disease, we challenged BTBRob/ob mice with a high-protein diet (HPD; 30%) and followed the progression of metabolic and renal changes up to 20 wk of age. Animals on the HPD showed enhanced metabolic derangements, evidenced by further increased levels of glucose, HbA1C, cholesterol, and alanine aminotransferase. The urinary albumin-to-creatinine ratio was markedly increased with a 53-fold change compared with lean controls, whereas BTBRob/ob mice on the standard diet only presented an 8-fold change. HPD resulted in more advanced mesangial expansion already at 14 wk of age compared with BTBRob/ob mice on the standard diet and also aggravated glomerular pathology as well as interstitial fibrosis. Gene expression analysis revealed that HPD triggered expression of markers of fibrosis and inflammation in the kidney and increased oxidative stress markers in urine. This study showed that HPD significantly aggravated renal injury in BTBRob/ob mice by further advancing albuminuria, glomerular, and tubulointerstitial pathology by 20 wk of age. This mouse model offers closer translation to humans and enables exploration of new end points for pharmacological efficacy studies that also holds promise to shorten study length.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Dieta Rica en Proteínas/efectos adversos , Enfermedades Renales/patología , Animales , Glucemia , Nefropatías Diabéticas/metabolismo , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos
19.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30760496

RESUMEN

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

20.
Am J Physiol Renal Physiol ; 316(6): F1201-F1210, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995111

RESUMEN

Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.


Asunto(s)
Lesión Renal Aguda/metabolismo , Tasa de Filtración Glomerular , Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Reabsorción Renal , Daño por Reperfusión/metabolismo , Transportador 1 de Sodio-Glucosa/deficiencia , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Recuperación de la Función , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Transportador 1 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA