Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 8(11): 5903-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19198324

RESUMEN

Two-dimensional nanostructures have various interesting applications due to their large surface areas. In this study, we propose a simple approach to synthesize two-dimensional NiO nano honeycomb by thermal annealing of Ni thin film deposited onto silicon substrate by thermal evaporation. The effects on the nano honeycomb morphology of the annealing temperature and time are investigated. Because the NiO nano honeycomb is realized onto silicon substrate, a basic material for microelectronics and micro-system, this will probably open the door to integrate the nano honeycomb into micro-system, thus leading to nano based functional devices. The as-synthesized NiO nano honeycomb is characterized by SEM, XRD, and surface area measurement.


Asunto(s)
Cristalización/métodos , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Níquel/química , Silicio/química , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
2.
J Colloid Interface Sci ; 290(1): 208-19, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15936767

RESUMEN

Boehmite xerogels are prepared by hydrolysis of Al(OC4H9)3 followed by peptization with HNO3 (H+/Al = 0, 0.07, 0.2). XRD and TEM show that these gels are made of nanosized crystals (5-9 nm in width and 3 nm thick). According to the amount of acid, no significant differences are found in size and shape, but only in the spatial arrangement of the crystallites. Nitrogen adsorption-desorption isotherms of nonpeptized gels are of type IV, whereas isotherms of peptized gels are of type I. These isotherms are analyzed by the t-plot method. The majority of pore volume results from intercrystalline mesopores, but the peptized gels also contain intercrystalline micropores. The particle packing is very dense for the gel peptized with H+/Al = 0.2 (porosity = 0.26), but it is less dense in non-peptized gel (porosity = 0.44). Heating these gels under vacuum creates, from 250 degrees C onwards, an intracrystalline microporosity resulting from the conversion of boehmite into transition alumina. But heating also causes intercrystalline micropores collapsing. The specific surface area increases up to a limit temperature (300 degrees C for nonpeptized gels and 400 degrees C for peptized) beyond which sintering of the particles begins and the surface decreases. The PSD are calculated assuming a cylindrical pore geometry and using the corrected Kelvin equation proposed by Kruk et al. Peptized xerogels give a monomodal distribution with a maximum near 2 nm and no pores are larger than 6 nm. Nonpeptized gels have a bimodal distribution with a narrow peak near to 2 nm and a broad unsymmetrical peak with a maximum at 4 nm. Heating in air above 400 degrees C has a strong effect on the porosity. As the temperature increases, there is a broadening of the distribution and a marked decrease of small pores (below 3 nm). However, even after treatment at 800 degrees C, micropores are still present.


Asunto(s)
Hidróxido de Aluminio/química , Óxido de Aluminio/química , Nanoestructuras/química , Cristalización , Geles , Hidrólisis , Microscopía Electrónica de Transmisión , Ácido Nítrico/química , Tamaño de la Partícula , Porosidad , Sensibilidad y Especificidad , Propiedades de Superficie , Temperatura , Difracción de Rayos X
3.
ACS Appl Mater Interfaces ; 5(3): 605-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23289538

RESUMEN

Interface layers between reactive and energetic materials in nanolaminates or nanoenergetic materials are believed to play a crucial role in the properties of nanoenergetic systems. Typically, in the case of Metastable Interstitial Composite nanolaminates, the interface layer between the metal and oxide controls the onset reaction temperature, reaction kinetics, and stability at low temperature. So far, the formation of these interfacial layers is not well understood for lack of in situ characterization, leading to a poor control of important properties. We have combined in situ infrared spectroscopy and ex situ X-ray photoelectron spectroscopy, differential scanning calorimetry, and high resolution transmission electron microscopy, in conjunction with first-principles calculations to identify the stable configurations that can occur at the interface and determine the kinetic barriers for their formation. We find that (i) an interface layer formed during physical deposition of aluminum is composed of a mixture of Cu, O, and Al through Al penetration into CuO and constitutes a poor diffusion barrier (i.e., with spurious exothermic reactions at lower temperature), and in contrast, (ii) atomic layer deposition (ALD) of alumina layers using trimethylaluminum (TMA) produces a conformal coating that effectively prevents Al diffusion even for ultrathin layer thicknesses (∼0.5 nm), resulting in better stability at low temperature and reduced reactivity. Importantly, the initial reaction of TMA with CuO leads to the extraction of oxygen from CuO to form an amorphous interfacial layer that is an important component for superior protection properties of the interface and is responsible for the high system stability. Thus, while Al e-beam evaporation and ALD growth of an alumina layer on CuO both lead to CuO reduction, the mechanism for oxygen removal is different, directly affecting the resistance to Al diffusion. This work reveals that it is the nature of the monolayer interface between CuO and alumina/Al rather than the thickness of the alumina layer that controls the kinetics of Al diffusion, underscoring the importance of the chemical bonding at the interface in these energetic materials.

4.
J Colloid Interface Sci ; 367(1): 120-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22082801

RESUMEN

In this paper we emphasise the important role of Pluronic F127 on the porosity of mesoporous alumina prepared from boehmite colloids. By focusing on the F127/boehmite interactions we show how the concepts of interface science may help to predict and improve the textural characteristics of mesoporous alumina. By varying the synthetic parameters, in particular the copolymer content, we show that the porosity of γ-Al(2)O(3) can be enhanced by 400% and the average pore diameter can be expanded from 5 to 14 nm. These results are discussed in terms of interactions between the Pluronic F127 and boehmite colloids, and are correlated to the critical micelle concentration (CMC) of the copolymer. The textural characteristics of the mesoporous alumina can be further improved either by introducing hydrocarbons in the preformed boehmite/copolymer sols or by concentrating the sols. In comparison with as-synthesised alumina, those prepared with F127 showed improved thermal stability. Furthermore, boehmite/copolymer sols were stable for all surfactant concentrations investigated and can give high quality coatings suitable for catalytic applications.

5.
J Colloid Interface Sci ; 336(2): 658-66, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19520374

RESUMEN

Catalyst layers (4-20 microm) of rhodium (1 wt%) supported on alumina, titania, and ceria-zirconia (Ce(0.5)Zr(0.5)O(2)) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (< or = 500 degrees C) steam reforming of propane at a steam to carbon ratio equal to 3 and low contact time (approximately 0.01 s). The best catalytic activity for propane steam reforming was observed for titania and ceria-zirconia supports for which propane conversion started at 250 degrees C and was more than three times better at 350 degrees C than conversion measured on alumina catalyst. For all catalysts a first-order kinetics was found with respect to propane at 500 degrees C. Addition of PEG 2000 in titania and ceria-zirconia sols eliminated the film cracking observed without additive with these supports. Besides, the PEG addition strongly expanded the porosity of the layers, so that full catalytic efficiency was maintained when the thickness of the ceria-zirconia and titania films was increased.

6.
J Colloid Interface Sci ; 337(1): 81-7, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19501838

RESUMEN

Very stable titania hydrosols were prepared by fast hydrolysis of titanium isopropoxide in a large excess of water. XRD patterns show that these sols contain nanocrystals (5-6 nm) of anatase (70%) and brookite (30%). TEM images indicate that these primary particles form aggregates whose mean hydrodynamic diameter, determined by photon correlation spectroscopy, is in the range of 80-90 nm. The flow curves of these colloids, recorded for several volume fractions of nanoparticles, can be perfectly fitted, in the range 0-100 s(-1), with a power-law model. In this range the behavior is Newtonian but for larger shear rates a shear thinning is observed. The viscosity dependence on particle concentration can be predicted by a Batchelor-type model were the volume fraction of particles is replaced by an effective volume fraction of aggregates, taking into account their fractal dimension. Addition of polyethylene glycol (PEG 2000) induced a marked decrease (more than 50%) of the sol viscosity down to a minimum. This is explained by assuming that PEG adsorbs on the surface of TiO(2) particles producing stabilization by steric effects and leading to formation of more compact aggregates. Without PEG the sol viscosity strongly decreases on aging. This effect is not caused by the growth of primary particles. It is rather interpreted as a progressive reorganization of the aggregates toward a more compact packing.

7.
Nanotechnology ; 19(15): 155605, 2008 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-21825619

RESUMEN

Two-dimensional nanostructures have a variety of applications due to their large surface areas. In this study, the authors present a simple and convenient method to realize two-dimensional NiO nanowalls by thermal treatment of a Ni thin film deposited by sputtering onto a stainless steel substrate. The substrate surface area is supposed to be significantly increased by creating nanowalls. The effects on the nanowall morphology of the thermal treatment temperature and duration are investigated. A mechanism based on the surface diffusion of Ni(2+) ions from the Ni base film is then proposed for the growth of the NiO nanowalls. The as-synthesized NiO nanowalls are characterized by scanning electron microscopy, energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy.

8.
J Colloid Interface Sci ; 225(2): 440-446, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11254283

RESUMEN

The equilibrium and kinetics of adsorption of NO and CO on nonstoichiometric nickel-copper manganites have been investigated through volumetric measurements. The adsorption isotherms were satisfactorily fitted to the Freundlich equation. The equilibrium coverages at 298 K were found to depend closely on the chemical composition of the oxide; thus, a decrease in the coverage beyond a maximum copper extent was observed. The adsorption isotherms of NO at various temperatures in the range from 298 to 473 K showed that the equilibrium coverage decreases with increasing temperature. This behavior enabled us to follow the logarithmic decrease of the heat of adsorption of NO on such surfaces. The adsorptions of NO and CO on surfaces preadsorbed with CO and NO, respectively, were also studied. These experiments showed the ability of NO to displace CO preadsorbed molecules whereas the contrary did not hold, suggesting the existence of common adsorption sites as well as some specific CO adsorption sites. Finally, some kinetic data are reported showing that the experimental adsorption results fit the Elovich equation (with t(0) approximately 0), although two distinct rate processes could be identified. Copyright 2000 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA