RESUMEN
This work reports on the synthesis of aspartic acid-functionalized graphene oxide-zinc oxide, as a functional porous material, and its potential to mitigate levofloxacin (LFXN). The adsorbent was characterized by various techniques, including ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The average crystallite size of the prepared composite was about 17.30 nm. Batch adsorption studies were carried out to elucidate the adsorption process for LFXN. Different parameters, including contact time, LFXN initial concentration, adsorbent concentration, pH, temperature, and ionic strength were studied. The mechanism and kinetics were studied by fitting the data to Freundlich and Langmuir isotherms, pseudo-first-order and pseudo-second-order kinetic models, respectively. The isotherm data was better fitted to Langmuir isotherm (R2 = 0.999) as compared to the Freundlich model. The maximum adsorption capacity obtained at equilibrium was 73.15 mg/g. For kinetic studies, Pseudo first order was better fitted with R2 = 0.87797, confirming the physisorption process. Thermodynamics parameters revealed that the process was exothermic and spontaneous at low temperatures. The adsorption mechanism was studied and the impregnation of LFXN in the adsorbent was confirmed by FTIR studies. This research proved that the designed GO/Asp-ZnO was a novel and promising adsorbent for the removal of LFXN with an efficiency of 95.12% at 30 mg/L LFXN by 0.6 g/L adsorbent in 24 h at pH = 7 and T = 25 °C.
Asunto(s)
Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Levofloxacino , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Termodinámica , Contaminantes Químicos del Agua/análisis , Concentración de Iones de HidrógenoRESUMEN
The current work explored a comparative study of biodegradable jamun seed/polyvinyl alcohol (JS) nanocomposites reinforced with varying concentrations of ZnO and Ag2O nano-fillers. The effect of spherical shaped ZnO and Ag2O nanoparticles (NPs) on the on structure, morphology, swelling and solubility, crystallinity and mechanical properties together with biodegradation performance of the composite films was fully studied. SEM results showed uniform distribution of ZnO and Ag2O nanofillers into the JS matrix and dense or compact nanocomposite films were formed. JS-ZnO and JS-Ag2O nanocomposites with 0.5 wt% ZnO and Ag2O content showed maximum crystallinity i.e. 11.3 and 9.58 %, respectively, as determined by XRD. When compared to the virgin JS film (8.41 MPa), the resultant JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites showed significantly enhanced tensile strength (35.7 MPa, 29.2 MPa), elongation at break (15.42 %, 14.62 %) and Young's modulus (141 MPa, 126 MPa), respectively. Also, reduced swelling (120.4 % and 116.1 %) and solubility ratio (17.45 % and 18.42 %) was observed for JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites, respectively. Biodegradation results showed that maximum degradation (88 %) was achieved for the JS film within 180 days of soil burial whereas JS-ZnO-0.1 and JS-Ag2O-0.1 nanocomposites showed 78 % and 72 % degradation within 180 days, respectively.
Asunto(s)
Celulosa , Nanocompuestos , Alcohol Polivinílico , Compuestos de Plata , Agua , Óxido de Zinc , Óxido de Zinc/química , Alcohol Polivinílico/química , Nanocompuestos/química , Celulosa/química , Agua/química , Compuestos de Plata/química , Semillas/química , Resistencia a la Tracción , Solubilidad , Óxidos/química , Fenómenos Mecánicos , Nanopartículas/químicaRESUMEN
Evaluation of the controlled release of ciprofloxacin (CIP.HCl) and the antibacterial efficacy of alginate (ALG)-based nanocarriers constitute the primary objectives of the current work. Herein, ALG-based nano-structures were prepared by the co-precipitation method and thoroughly analyzed using different characterization techniques, i.e., fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and zeta potential (ZP). The intense peaks emerged at 500, 545, and 750 cm-1 due to the CeO bond. Peaks that appeared at 550-600 cm-1 and 525 cm-1 are due to the stretching vibrations of FeO and ZnO bonds, respectively. Lowering of the peaks from 1640 to 1630 cm-1 and 1420 to 1384 cm-1 were observed in ALG-based nanocomposite (NC) due to the interaction of ALG with metal oxides (MO), which confirmed the formulation of CeO2/ZnFe2O4/ALG nanocomposite. The diffraction peaks at 28.6°, 56.6°, 76.5°, 37°, 47.9°, 62.3°, 74°, 13°, 21° confirmed the synthesis of MO (crystallite size 15.74 nm) and CeO2/ZnFe2O4/ALG (12 nm). In accordance with morphological studies, CeO2/ZnFe2O4 oxides had a uniform distribution throughout the relatively smooth and permeable surface of the ALG-based NC. Ciprofloxacin (CIP) was used as a model drug. Negative values of ZP revealed that CIP-loaded nanocomposite (CeO2/ZnFe2O4/ALG/CIP) had more stability than CeO2/ZnFe2O4/ALG. The maximum percentage of loading around 25 % on ALG NC was examined using the optical density (OD) method at pH 5.5. Correlation coefficients from the first order (0.971), Korsmeyer (0.9858), and Hixson (0.9021) models show the best-fitted models of the release profile in all circumstances. The release mechanism was investigated using various kinetics models. The controlled drug released was observed around 17 % at 40 °C after 3 h at pH 7.4, which is almost identical to the body temperature of a human, which is 37 °C. Similarly, after 24 h, sustained and controlled in-vitro release of the drug was studied, and it was 37, 72, and 74 % at pH 2.2, 7.4, and 9.4, respectively. Thus, prepared ALG-based NC is suitable for the controlled in-vitro release of (CIP.HCl). Metal oxides (CeO2/ZnFe2O4) and ALG-based nanocomposite (CeO2/ZnFe2O4/ALG) showed great antibacterial activity against Staphylococcus aureus (S. aureus) like 15 mm and 14 mm than Escherichia coli (E. coli).
Asunto(s)
Alginatos , Antibacterianos , Ciprofloxacina , Portadores de Fármacos , Alginatos/química , Antibacterianos/farmacología , Antibacterianos/química , Portadores de Fármacos/química , Ciprofloxacina/química , Ciprofloxacina/farmacología , Liberación de Fármacos , Nanocompuestos/química , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos , Difracción de Rayos XRESUMEN
Human milk comprises a diverse array of microbial communities with health-promoting effects, including colonization and development of the infant's gut. In this study, we characterized the bacterial communities in the Egyptian mother-infant pairs during the first year of life under normal breastfeeding conditions. Out of one hundred isolates, forty-one were chosen for their potential probiotic properties. The selected isolates were profiled in terms of morphological and biochemical properties. The taxonomic evidence of these isolates was investigated based on 16S rRNA gene sequence and phylogenetic trees between the isolates' sequence and the nearest sequences in the database. The taxonomic and biochemical evidence displayed that the isolates were encompassed in three genera: Lactobacillus, Enterococcus, and Lactococcus. The Lactobacillus was the most common genus in human milk and feces samples with a high incidence of its different species (Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus casei). Interestingly, BlastN and Jalview alignment results evidenced a low identity ratio of six isolates (less than 95%) with database sequences. This divergence was supported by the unique physiological, biochemical, and probiotic features of these isolates. The isolate L. delbrueckii, ASO 100 exhibited the lowest identity ratio with brilliant probiotic and antibacterial features suggesting the high probability of being a new species. Nine isolates were chosen and subjected to probiotic tests and ultrastructural analysis; these isolates exhibited antibiotic resistance and antibacterial activity with high probiotic characteristics, and high potentiality to be used as prophylactic and therapeutic agents in controlling intestinal pathogens.
RESUMEN
Ethyl acetate, ethanol, and acetone extracts of the medicinal plants Thymelaea hirsuta L., Urginea maritima L., and Plantago albicans L. (aerial parts) were evaluated for their phytochemical compositions, antimycotic activity against dermatophytes, and antiproliferative activity against different human cancer cell lines. Among them, the ethanolic extracts showed the highest phytochemical contents along with hyperactivities and were then selected for gas chromatography-mass spectrometry and Fourier-transform infrared spectroscopy analysis. The Fourier-transform infrared spectroscopy analysis confirmed the presence of different characteristic peak values with various functional chemical groups of the active components. However, U. maritima extracts through Fourier-transform infrared spectroscopy analysis showed distinctive peaks related to phenolic, amines, amides, aromatic, alkanes, alkyne, cyclopentanone, conjugated aldehyde, nitro, methoxy, uronic acids, aromatic esters, tertiary alcohol or ester, secondary and primary alcohols, aliphatic ether, sulfoxide, vinylidene, and halo compounds. Many bioactive main compounds with reported biological activities were detected by GC/MS (%) in the ethanolic extract of T. hirsuta, U. maritima, and P. albicans. All studied dermatophytes included a diverse set of virulence factors, including phospholipase, protease, keratinase, hemolysis, and melanoid production, all of which play vital roles in dermatophytic infection. Ethanolic extract of P. albicans inhibited the growth of Trichophyton soudanense totally and Trichophyton erinacei in addition to all Microsporum species. In contrast, the ethanolic extract of Trichophyton hirsuta at concentrations of 25 g/mL totally prevented the growth of all Trichophyton species. EtOH extract of U. maritima completely prevented the growth (100% inhibition) of all dermatophytic strains under study at the lowest concentration of 12.5 µg/mL. Scanning electron microscope analysis revealed considerable morphological modifications and structural alterations in dermatophyte species exposed to ethanolic extract of these plants. The viability of HCT-116, HepG-2, MCF-7, and HeLa cell lines was reduced after treatment with the ethanolic extracts of T. hirsuta, U. maritima, and P. albicans individually with IC50 values (10.0, 9.97, 48.5, and 56.24 µg/mL), (26.98, 25.0, 17.11, and 9.52 µg/mL), and (9.32, 7.46, 12.50, and 16.32 µg/mL), respectively. Our work revealed the significance of these traditional ethnomedical plants as potent sources for biologically active pharmaceuticals with potential applicability for the treatment of fungal and cancer diseases.
Asunto(s)
Drimia , Plantago , Plantas Medicinales , Thymelaeaceae , Humanos , Plantas Medicinales/química , Antifúngicos/farmacología , Antifúngicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células HeLa , Fitoquímicos/farmacología , Fitoquímicos/químicaRESUMEN
Background: This study was designed to investigate Saudis' attitudes toward mental distress and psychotropic medication, attribution of causes, expected side effects, and to analyze participants' expectations toward alternative or complementary medicine using aromatic and medicinal plants, through a survey. Method: The study included 674 participants (citizens and residents in Saudi Arabia) who were randomly contacted via email and social media and gave their consent to complete a questionnaire dealing with 39 items that can be clustered in six parts. Descriptive statistics and Chi-square for cross-tabulation were generated using SPSS. Results: Among the 664 participants, 73.4% believed that there are some positive and negative outcomes of psychotropic medication. Participants (72.0%) think that the most important reason leading to psychological disorders is mainly due to the loss of a relative or beloved person, and 73.9% considered psychic session as one of the possible treatments of psychological disorders. Surprisingly, only 18.8% of the participants agreed that medicinal and aromatic plants could be a possible treatment of the psychological disorder. Participants (82%) consider that physicians are the most trustful and preferred source of information about alternative and complementary medicine.