Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Immunol ; 45(2): 592-602, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403978

RESUMEN

In addition to its classical receptor, CD40, it is now well established that CD154 also binds αIIbß3, α5ß1, and αMß2 integrins. Although these integrins are all members of the same family, they bind CD154 differently. The current investigation aims to analyze the interaction of CD154 with α5ß1 and αMß2 and investigate its role in bidirectional signals in various human cell lines. Results obtained herein indicate that the CD154 residues involved in the interaction with α5ß1 are N151 and Q166, whereas those involved in αMß2 binding are common to residues required for CD40, namely Y145 and R203. Soluble CD40/CD154 or αMß2/CD154 complexes do not interfere with the binding of CD154 to α5ß1-positive cells, but inhibit the binding of CD154 to CD40- or αMß2-positive cells, respectively. Ligation of CD154 on CD154-positive cells with soluble CD40, αIIbß3, α5ß1, or αMß2 stimulates intracellular signaling, including MAPK phosphorylation. Given that CD154 exists as a trimer, our data strongly suggest that CD154 may bind concomitantly to two receptors of the same or different family, and biologically activate cells expressing both receptors. The characterization of CD154/receptor interactions helps the identification of new therapeutic targets for the prevention and/or treatment of CD154-associated autoimmune and inflammatory diseases.


Asunto(s)
Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Integrina alfa5beta1/metabolismo , Antígeno de Macrófago-1/metabolismo , Animales , Antígenos CD40/genética , Antígenos CD40/inmunología , Ligando de CD40/genética , Ligando de CD40/inmunología , Línea Celular Tumoral , Drosophila melanogaster , Expresión Génica , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/inmunología , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal
2.
J Allergy Clin Immunol ; 133(3): 853-63.e5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24210883

RESUMEN

BACKGROUND: Intravenous immunoglobulin (IVIg) is a polyclonal IgG preparation with potent immunomodulating properties. Our laboratory demonstrated that IVIg significantly increases numbers of forkhead box protein 3-positive regulatory T (Treg) cells through generation of tolerogenic dendritic cells (DCs) in an allergic airways disease model. OBJECTIVE: We sought to investigate potential receptors on DCs mediating these events. METHODS: C57BL/6 mice were either sensitized to ovalbumin (OVA) intraperitoneally or through adoptive transfer of OVA-primed DCs and then challenged with intranasal OVA. IVIg was fractionated into sialic acid-enriched IVIg (SA-IVIg) and sialic acid-depleted IVIg (non-SA-IVIg). Dendritic cell immunoreceptor (DCIR) constructs in CHO cells or on DCs were examined by using fluorescent microscopy and flow cytometry. RESULTS: Administration of SA-IVIg, but not non-SA-IVIg, to OVA-sensitized and OVA-challenged mice induced Treg cells and attenuated airway hyperresponsiveness (AHR) and inflammation comparably with IVIg. Bone marrow-derived dendritic cells cultured with SA-IVIg or IVIg adoptively transferred to mice before OVA challenge induced Treg cells and inhibited AHR. IVIg-treated bone marrow-derived dendritic cells from Fcγ receptor knockout mice inhibited AHR, suggesting IVIg's action was not caused by Fcγ receptor-mediated events. Fluorescently labeled IVIg or SA-IVIg bound DCs and colocalized specifically to the C-type lectin DCIR. IVIg binding to DCIR induced phosphorylation of Src homology domain 2-containing protein tyrosine phosphatase (SHP) 2 and Src homology domain 2-containing inositol phosphatase 1 (SHIP-1) and internalization of IVIg into DCs. Inhibition of IVIg binding to DCIR by small interfering RNA completely blocked induction of Treg cells. Inhibition of SHP-2 or abrogation of IgG internalization through clatherin inhibitors rendered IVIg ineffective. CONCLUSIONS: IVIg alleviates allergic airways disease through interaction of SA-IgG with DCIR. DCIR is a novel receptor for IVIg, mediating interaction of innate and adaptive immunity in tolerogenic responses.


Asunto(s)
Inmunoglobulinas Intravenosas/farmacología , Lectinas Tipo C/fisiología , Glicoproteínas de Membrana/fisiología , Receptores Inmunológicos/fisiología , Linfocitos T Reguladores/inmunología , Animales , Hiperreactividad Bronquial/prevención & control , Células CHO , Cricetulus , Células Dendríticas/inmunología , Inmunoglobulina G/inmunología , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
3.
J Biol Chem ; 287(22): 18055-66, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22461623

RESUMEN

In addition to its classical CD40 receptor, CD154 also binds to αIIbß3, α5ß1, and αMß2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbß3, and α5ß1 receptors. We found that the binding affinity of CD154 for αIIbß3 is ∼4-fold higher than for α5ß1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbß3 and show that CD154 residues involved in its binding to CD40 or αIIbß3 are distinct from those implicated in its interaction to α5ß1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5ß1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5ß1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors.


Asunto(s)
Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Integrina alfa5beta1/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Secuencia de Bases , Western Blotting , Ligando de CD40/genética , Cartilla de ADN , Citometría de Flujo , Humanos , Mutagénesis , Fosforilación , Unión Proteica , Receptor Cross-Talk , Células U937 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Eur J Immunol ; 41(8): 2358-67, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21567389

RESUMEN

CD40, a member of the TNF receptor family, is expressed on a variety of immune and non-immune cells. Its interaction with its ligand, CD154, plays a pivotal role in humoral and cell-mediated immunity. A low level of CD40 is constitutively associated within membrane lipid rafts and, upon engagement, this level is significantly enhanced. In this study, our objective is to evaluate the process of CD40/lipid raft association in terms of the signals required for its initiation and the resulting biological outcomes. Here, we show the CD40/lipid raft association to be independent of PI-3-kinase, Src family kinases and p38 MAPK pathways. Moreover, CD40 lacking its intracellular domain, which is usually required for CD40-mediated signaling, still localizes to lipid rafts upon engagement, confirming that the CD40/lipid raft association is independent of signaling events. As to the biological outcomes of the CD40/lipid raft association, we show that disrupting lipid raft integrity selectively abolishes CD40-mediated Akt phosphorylation. In addition, replacing the transmembrane domain of CD40 with that of CD45 (a protein excluded from lipid rafts) dramatically reduced CD40-mediated Akt phosphorylation and B7.1 upregulation, while not influencing p38, ERK and JNK activation. Together, these findings clarify the requirements for CD40/lipid raft association and the signals triggered upon CD40 engagement by CD154.


Asunto(s)
Antígenos CD40/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Western Blotting , Antígenos CD40/genética , Ligando de CD40/metabolismo , Línea Celular Tumoral , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
5.
Eur J Immunol ; 40(3): 770-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20039299

RESUMEN

Although signal pathways triggered via the CD40 molecule are well characterized, those induced via CD154 are less known. This study demonstrates that engagement of CD154 in Jurkat D1.1 cells with soluble CD40 leads to PKC alpha and delta activation, calcium mobilization, and phosphorylation of the Map kinases ERK1/2 and p38. Such response is accompanied by significant recruitment of CD154 into lipid rafts. Disruption of lipid rafts integrity with nystatin or methyl beta-cyclodextrin abrogated PKCalpha PKCdelta and p38 phosphorylation, but had no effect on ERK1/2 phosphorylation. Inhibition of PKC activation completely abolished p38 phosphorylation but had no effect on ERK1/2 phosphorylation, suggesting that localization of CD154 within lipid rafts is an absolute requirement for CD154-induced PKCalpha- and PKCdelta-dependent p38 phosphorylation. Furthermore, CD154 acts as co-stimulator for the production of IL-2 in an APC-superantigen-T-cell activation model. The results obtained demonstrate for the first time, that lipid rafts are of immunological relevance for CD154-triggered signals, and reinforce the importance of CD154 in T-cell activation.


Asunto(s)
Ligando de CD40/inmunología , Activación de Linfocitos/inmunología , Microdominios de Membrana/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Western Blotting , Ligando de CD40/metabolismo , Separación Celular , Citometría de Flujo , Humanos , Células Jurkat , Microdominios de Membrana/metabolismo , Linfocitos T/metabolismo
6.
Mol Endocrinol ; 22(10): 2278-92, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18653781

RESUMEN

Somatostatin (SST) analogs have been successfully used in the medical treatment of acromegaly, caused by GH hypersecreting pituitary adenomas. Patients on SST analogs rarely develop tachyphylaxis despite years of continuous administration. It has been recently proposed that a functional association between SST receptor (SSTR) subtypes 2 and 5 exists to account for this behavior; however, a physical interaction has yet to be identified. Using both coimmunoprecipitation and photobleaching fluorescence resonance energy transfer microscopy techniques, we determined that SSTR2 and SSTR5 heterodimerize. Surprisingly, selective activation of SSTR2 and not SSTR5, or their costimulation, modulates the association. The SSTR2-selective agonist L-779,976 is more efficacious at inhibiting adenylate cyclase, activating ERK1/2, and inducing the cyclin-dependent kinase inhibitor p27(Kip1) in cells expressing both SSTR2 and SSTR5 compared with SSTR2 alone. Furthermore, cell growth inhibition by L-779,976 treatment was markedly extended in coexpressing cells. Trafficking of SSTR2 is also affected upon heterodimerization, an attribute corresponding to modifications in beta-arrestin association kinetics. Activation of SSTR2 results in the recruitment and stable association of beta-arrestin, followed by receptor internalization and intracellular receptor pooling. In contrast, heterodimerization increases the recycling rate of internalized SSTR2 by destabilizing its interaction with beta-arrestin. Given that SST analogs show preferential binding to SSTR2, these data provide a mechanism for their effectiveness in controlling pituitary tumors and the absence of tolerance seen in patients undergoing long-term administration.


Asunto(s)
Estructura Cuaternaria de Proteína , Receptores de Somatostatina/química , Receptores de Somatostatina/metabolismo , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Línea Celular , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Dimerización , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal/fisiología , beta-Arrestinas
7.
Cell Signal ; 19(11): 2304-16, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17706924

RESUMEN

Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores de Dopamina D2/metabolismo , Receptores de Somatostatina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , AMP Cíclico/antagonistas & inhibidores , Dimerización , Endocitosis , Fluorescencia , Humanos , Inmunoprecipitación , Masculino , Microscopía Confocal , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
8.
J Carcinog ; 4(1): 10, 2005 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16018813

RESUMEN

Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors. Estradiol, a potent trophic and mitogenic hormone in its target tissues, is known to modulate the expression of SST and its receptors. Accordingly, in the present study, we determined the effects of tamoxifen, a selective estrogen receptor (ER) modulator (SERM), and estradiol on SSTR1 and SSTR2 expression at the mRNA and protein levels in ER-positive and -negative breast cancer cells. We found that SSTR1 was upregulated by tamoxifen in a dose-dependent manner but no effect was seen with estradiol. In contrast, SSTR2 was upregulated by both tamoxifen and estradiol. Combined treatment caused suppression of SSTR1 below control levels but had no significant effect on SSTR2. Treatment with SSTR1-specific agonist was significantly more effective in suppressing cell proliferation of cells pre-treated with tamoxifen. Taking these data into consideration, we suggest that tamoxifen and estradiol exert variable effects on SSTR1 and SSTR2 mRNA and protein expression and distributional pattern of the receptors. These changes are cell subtype-specific and affect the ability of SSTR agonists to inhibit cell proliferation.

9.
J Neurochem ; 101(3): 664-73, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17254009

RESUMEN

In beta-amyloid (Abeta)-induced neurotoxicity, activation of the NMDA receptor, increased Ca2+ and oxidative stress are intimately associated with neuronal cell death as normally seen in NMDA-induced neurotoxicity. We have recently shown selective sparing of somatostatin (SST)-positive neurons and increased SST expression in NMDA agonist-induced neurotoxicity. Accordingly, the present study was undertaken to determine the effect of Abeta25-35-induced neurotoxicity on the expression of SST in cultured cortical neurons. Cultured cortical cells were exposed to Abeta25-35 and processed to determine the cellular content and release of SST into medium by radioimmunoassay and SST mRNA by RT-PCR. Abeta25-35 induces neuronal cell death in a concentration- and time-dependent fashion, increases SST mRNA synthesis and induces an augmentation in the cellular content of SST. No significant changes were seen on SST release at any concentration of Abeta25-35 after 24 h of treatment. However, Abeta25-35 induces a significant increase of SST release into medium only after 12 h in comparison with other time points. Most significantly, SST-positive neurons are selectively spared in the presence of a lower concentration of Abeta25-35, whereas, in the presence of higher concentrations of Abeta25-35 for extended time periods, SST-positive neurons decrease gradually. Furthermore, Abeta25-35 induces apoptosis at lower concentrations (5 and 10 micromol/L) and necrosis at higher concentrations (20 and 40 micromol/L). Consistent with the increased accumulation of SST, these data suggest that Abeta25-35 impairs cell membrane permeability. Selective sparing of SST-positive neurons at lower concentrations of Abeta25-35 at early time points directly correlates with the pathophysiology of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Corteza Cerebral/citología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Somatostatina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Necrosis/inducido químicamente , ARN Mensajero/biosíntesis , Radioinmunoensayo/métodos , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Somatostatina/genética , Sales de Tetrazolio , Tiazoles , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA